ИЗСЛЕДВАНЕ НА ВЛИЯНИЕТО НА СТЪКЛОВЪГЛЕРОДНОТО ПОКРИТИЕ ВЪРХУ МИКРОТОПОГРАФИЯТА НА АРТИКУЛИРАЩАТА ПОВЪРХНОСТ НА КЕРАМИЧНИ СТАВНИ ГЛАВИ

Иванка Калиманова¹⁾ Димитър Теодосиев²⁾, Димитър Дяков³⁾, Христиана Николова⁴⁾

¹⁾ ТУ – София, бул. Кл. Охридски 8, 1000; e-mail: <u>ikaliman@tu-sofia.bg</u>
²⁾ ИКИТ–БАН, 1113 София, ул. Акад. Г. Бончев, бл.1; e-mail:<u>dteod@space.bas.bg</u>
³⁾ ТУ – София, бул. Кл. Охридски 8, 1000; e-mail: <u>diakov@tu-sofia.bg</u>
⁴⁾ ТУ – София, бул. Кл. Охридски 8, 1000; e-mail: <u>hristqna@abv.bg</u>

Резюме: В доклада са представени резултатите от измерването на грапавостта на работната повърхност на керамични сферични глави. Изследвано е влиянието на стъкловъглеродното покритие върху микротопографията на повърхността при различните цикли на нанасяне на покритието.

Ключови думи: керамични импланти, стъкловъглеродното покритие, грапавост, измерване

1. Въведение

Нарасналият брой успешни ортопедични операции за поставяне на феморалноацетабуларни импланти поставя на първо място въпроса за тяхната дълготрайност, определяна в значителна степен от износването на артикулиращите ИМ повърхности. Материалите, използвани за изработване на хирургични импланти, следва да удовлетворяват предписаните в стандартите изизскванията за биосъвместимост, механични и трибологични свойства. Наред с металните сплави (титаниева, кобалтохромова сплав и др.) от 1970 г. започва използването и на керамични материали за изработване на сферичните глави за пълни частични феморално-ацетабуларни или импланти. Като алтернатива на металните сплави се използват различни керамични Al_2O_3 (aluma). материали като, ZrO_2 (zirconia), хибридни алумино-циркониеви керамики и др. [1, 2, 3, 4, 5, 6].

Изследванията на износването на контактните повърхнини на тазобедрени протези показват, че един от основните фактори, влияещи върху износването на имплантите, е геометрията и, в частност, микротопографията на артикулиращите повърхнини на импланта.

Ето защо от съществено значение е

използването на материали и технологии, позволяващи получаване на повърхнини с необходимото качество. Една от възможностите за повишаване на качеството на ендопротезите е отлагането на покрития върху артикулиращата повърхност на импланта. Установяването на ефективността на покритията е свързано и с изследването на влиянието им върху микротопографията (грапавостта) на повърхността.

2. Основни параметри характеризиращи микротопографията на повърхнините

Параметрите, характеризиращи микротопографията на повърхнините на детайлите, са дефинирани в стандарт ISO 4287 [13, 14]. В практиката се използват редица параметри $(R_a, R_q, R_p, R_v, R_t, R_z и др.)$, определяни по резултатите от сканирането на определена базова дължина *l* от профила.

При измерването се сканира профил от повърхнината с дължина L_{scan} (фиг. 1), като при оценка на параметрите началният (l_o) и крайният (l_f) участъци от сканирания профил се изключват и се оценява участък с дължина $L_m = nl$ (обикновено n=5).

Средно аритметичното отклонение R_a на профила от средната линия се определя като средна аритметична стойност на абсолютните стойности на отклоненията z(x)

Фиг. 1. Параметри на микротопографията

на измерения профил от средната линия в границите на базовата дължина *l*, т.е.:

$$R_a = \frac{1}{l} \int_{0}^{l} |z(x)| \, dx$$

Параметърът R_a е статистически стабилен и повторим, но при него не се прави разлика между върхове и падините на профила.

Средноквадратичното отклонение R_q на оценявания профил от средната линия в границите на базовата дължина l се определя по формулата:

$$Rq = \sqrt{\frac{1}{l} \int_{0}^{l} z^2(x) dx}$$

Параметърът R_q е по-чувствителен към върховете и падините в сравнение с R_a и се използва обикновено при изследвания и статистически контрол на много гладки повърхнини [15].

 R_p и R_v са съответно максималната височина на върховете и максималната дълбочина на падините в границите на една базова дължина *l*.

 R_z е сумата от височината на най-големия пик и дълбочината на най-голямата падина в границите на базовата дължина l $(R_z = R_v + R_P)$.

R_c е средноаритметичната височина на неравностите в границите на базовата дължина *l*.

*R*_t е сумата от височината на най-големия

пик (z_{Pmax}) и дълбочината на най-голямата падина ($z_{v,max}$) в границите на оценяваната дължина L_m ($Rt \ge R_{_T}$).

 R_{max} е максималната височина на профила в оценявания участък L_m . Полезно е да се използва за оценка на повърхности, по които не е допустимо наличието дори на единични дефекти [6].

 RS_m е средното разстояние между неравностите на повърхността в границите на базовата дължина *l*.

3. Керамични глави със стъкловъглеродни покрития

Един керамичните материали, ОТ разработван за целите на ендопротезирането е създадената от колектива по проекта оригинална нова композиционна керамика, на основата на Al_2O_3 – $CaTiO_3$ [7]. Зa характеристиките подобряване на на феморално-ацетабуларни ставни импланти върху артикулиращите повърхнини на сферичните феморални глави се нанася стъкло-въглеродно покритие [8, 9]. Технологията на нанасяне на покритието включва три цикъла.

<u>*I цикъл*</u>: След многократно вариране на температурните режими и концентрации на работните разтвори, използвани за покриване на главите със стъкловъглерод, е определен следният оптимален режим: след потапяне работен разтвор В въглеводороди, последвано от изсушаване на главите във вакуум до 150°С, те се подлагат на термообработка във високотемпературната инсталация в инертна среда на аргон, като се нагряват със скорост от 10°С/тіп до 950°С, с последващо задържане при тази температура за 50 min и бавно охлаждане до стайна температура в пещта в инертна атмосфера. Този цикъл от процедури се повтаря до десет пъти, докато се получи покритие с желаната дебелина И осигуряващо достатъчно количество стъкловъглерод в порите и на повърхността на керамичните глави.

<u>II цикъл:</u> Термообработка на уплътнениете и покрити със стъкловъглероден слой глави в инертна среда до температури 1350 – 1400°С, при

следния темпаратурен режим: покачване на температурата със скорост 10°С/тіп до достигане на 1350 - 1400°С, задържане при тази температура за 60 min, последващо контролирано охлаждане до 1000°С със скорост 10°С/тіп в инертна среда И изстиване на главите заедно с пещта до стайна температура. В резултат на тази термообработка се образува титанов карбид, водещ ло подобряване адхезията на стъкловъглеродния слой, съгласно предишни изследвания на колектива [10, 11, 12]. Като резултат от този цикъл се наблюдава и увеличаване на модула на Юнг на материала на изследваните глави.

<u>III цикъл:</u>

За постигане на необходимата гладкост повърхности на керамичните работните подлагат неколкократно глави ce на последователно редуващи се процедури на покриване със стъкловъглерод, междинно полиране с диамантена паста с едрина до 1 μт, химическо почистване в утразвукова вана с трихлоретилен, а след това и с чист спирт, изсушаване на въздух и отново покриване със стъкловъглерод. След всяко полиране се извършва контрол на гладкостта на повърхностите на главите. Циклите се повтарят до постигане на необходимия клас на грапавост на работните повърхнини.

Една от задачите на изследванията на качеството на керамичните глави със стъкловъглеродно покритие включва анализ на влиянието на стъкловъглеродно покритие върху микротопографията на артикулиращите повърхнини.

Изискванията към грапавостта на артикулиращите повърхнини на керамичните сферични глави на феморалноацетабуларните импланти са регламентирани в БДС EN ISO 21534:2007 [16] и ISO 7206-2:1996 [17] както следва:

- за керамичните сферични глави за частични импланти допустимата грапавост е $0,5 \ \mu m$ при базова дължина $l = 0,08 \ mm;$

- за керамичните сферични глави за тотални импланти допустимата грапавост е 0,02 μ m при "cut off" $\lambda = 0,08$ mm.

4. Резултати от изследването на грапавостта на артикулиращите повърхнини на керамични глави

е микротопографията Изследвана на повърхност феморални сферичната на сферични глави (ø 32 mm) от композиционна керамика, на основата на Al₂O₃ – CaTiO₃ със стъкловъглеродно покритие. Измерена е грапавостта на повърхнините преди нанасяне на покритие (чисти керамични повърнини) и грапавостта им след подлагането им на обработка с различен брой технологични цикли на нанасяне на стъкловъглеродно покритие.

Измерванията са извършени с уред за измерване на грапавост TESA RUGOSURF 10G (фиг. 2) с измервателен обхват 0...+300 µm и разделителна способност 0,005 µm [18].

Профилът на повърхността е сканиран и са определени параметрите на грапавостта в три различни направления. Резултатите от измерванията частично са представени в таблица 1 и таблица ?

C 1	R_a , µm									
Copepa N ^o	Без	С покритие								
IN	покритие	Цикъл N ^o 1	Цикъл N ^o 2							
1.	0.598	0.455	0.370							
2.	0.608	0.485	-							
3.	0.530	-	-							
4.	0.519	0.423	-							
5.	0.669	0.530	0.382							
6.	0.725	0.606	0.366							
7.	0.650	0.541	-							
8.	0.657	0.483	0.402							
9.	0.589	0.606	-							

Таблица 1. Грапавост на повърхността преди и слел нанасяне на покритие.

Па	кр.	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Сфера		R_a [µ	ım]	$R_q[$	µm]	R_t [µm]	R_z [µm]	R_p [µm]	R_v [µm]	R_c [um]	RS_m	[µm]	*R _{max}	[µm]
1.	Ι	0.570	0.295	0.978	0.498	18.102	11.228	1.174	0.640	5.791	3.021	6.695	3.661	2.131	0.950	70.000	53.000	18.102	11.228
	П	0.414	0.449	0.636	0.799	6.901	13.146	1.100	0.995	3.227	4.290	4.327	5.285	1.363	1.459	45.000	66.000	6.901	13.146
	Ш	0.380	0.367	0.531	0.609	4.685	12.576	1.236	0.757	2.443	3.378	3.679	4.135	1.224	1.424	42.000	70.000	4.567	12.576
	R_{qp}	0.455	0.370	0.715	0.635	9.896	12.317	1.170	0.797	3.820	3.563	4.900	4.360	1.573	1.278	52.333	63.000	9.857	12.317
	Ι	0.485		0.882		18.682		0.920		5.601		6.521		1.720		52.000		18.682	
2	Π	0.553		0.824		7.602		1.358		4.052		5.410		1.468		48.000		7.199	
۷.	Ш	0.541		0.734		7.472		1.210		3.331		4.521		1.574		47.000		7.472	
	R _p	0.485	-	0.813	-	11.252	-	1.163	-	4.328	-	5.484	-	1.587	-	49.000	-	11.118	-
4.	Ι	0.368		0.489		6.288		0.849		2.567		3.416		1.099		44.000		6.288	
	Π	0.557		0.911		11.602		1.051		5.295		6.345		1.649		44.000		11.498	
	Ш	0.343		0.480		4.192		0.697		1.870		2.567		-		-		4.013	
	R _p	0.423	-	0.627	-	7.361	-	0.866	-	3.244	-	4.109	-	1.374	-	44.000	-	7.266	-
5	Ι	0.425	0.313	0.749	0.514	13.621	8.475	1.079	0.729	4.907	3.091	5.986	3.820	1.498	0.974	46.000	61.000	13.621	8.475
	Π	0.651	0.454	0.978	0.777	12.781	14.049	1.896	0.848	4.368	4.380	6.264	5.228	1.901	1.882	76.000	115.000	8.708	14.049
5.	Ш	0.513	0.378	0.974	0.716	13.460	15.510	1.252	0.723	6.654	5.251	7.906	5.974	2.048	2.048	56.000	86.000	13.283	15.510
	R _{\varphi}	0.530	0.382	0.900	0.514	13.621	8.475	1.079	0.729	4.907	3.091	5.986	3.820	1.498	0.974	46.000	61.000	13.621	8.475
	Ι	0.682	0.391	1.083	0.579	17.281	9.670	1.455	0.873	5.822	2.814	7.277	3.687	1.976	1.074	59.000	62.000	17.281	9.456
6	П	0.648	0.316	1.012	0.441	11.690	4.122	1.182	0.728	4.998	1.792	6.180	2.520	1.926	0.840	66.000	50.000	11.484	4.122
0.	Ш	0.487	0.391	0.694	0.605	5.637	11.244	1.145	0.804	3.372	3.281	4.517	4.085	1.379	1.112	45.000	79.000	5.423	11.244
	R _p	0.606	0.366	0.930	0.542	11.536	8.345	1.261	0.802	4.731	2.629	5.991	3.431	1.760	1.009	56.667	63.667	11.396	8.274
	Ι	0.575		0.893		10.935		1.125		5.020		6.145		1.778		52.000		10.788	
7	Π	0.506		0.819		14.174		1.108		4.574		5.682		1.547		44.000		14.174	
	Ш	0.541		0.856	-	12.555		1.117		4.797		5.914		1.663		48.000		12.481	
	R_{qp}	0.425	-	0.749	-	13.621	-	1.079	-	4.907	-	5.986	-	1.498	-	46.000	-	13.621	-
	Ι	0.451	0.496	0.665	0.956	7.764	14.322	0.946	0.895	3.977	6.642	4.923	7.537	1.397	2.586	42.000	72.000	7.523	14.322
8.	Π	0.530	0.344	0.784	0.531	7.705	9.934	1.089	0.750	4.404	2.911	5.493	3.661	1.592	0.926	44.000	62.000	7.616	9.934
	Ш	0.467	0.367	0.673	0.666	7.337	15.097	1.004	0.756	3.560	3.941	4.564	4.697	1.374	1.542	40.000	73.000	7.337	15.097
	R_{φ}	0.483	0.402	0.707	0.718	7.602	13.118	1.013	0.800	3.980	4.498	4.993	5.298	1.454	1.685	42.000	69.000	7.492	13.118
	l T	0.755	0.496	1.386		27.513		2.118		7.145		9.263		2.385		52.000		27.513	
9.	Ш	0.430	0.344	0.613		6.964		0.936		3.073		4.009		1.255		42.000		6.964	
	Ш	0.634	0.367	1.159		16.886		1.231		6.875		8.106		1.803		52.000		15.997	
	R_{qp}	0.606	0.402	1.053	-	17.121	-	1.428	-	5.698	-	7.126	-	1.814	-	48.667	-	16.825	-

Таблица 2. Грапавостта на керамични повърхнини със стъкло-въглеродно покритие

Фиг. 2. Профили на 3 сканирани сечения на глава N^o 4 (а) и N^o 9 (б) след първия цикъл на нанасяне на покритие

В таблица 1 са представени средните стойности на параметъра R_a получени от измерването в три различни направления

За получаване на по-пълна картина за състоянието на повърхността след нанасяне на покритието наред с параметъра R_a са оценени и други параметри на грапавостта $(R_q, R_t, R_z, R_p, R_v, R_c, R_{max} \text{ и } RS_m)$. Резултатите от измерването при базова дължина $l = \lambda_{cutoff} = 0.8$ mm са представени в Таблица 2.

Заключение

Анализът на резултатите показва, че първия цикъл нанасяне след на на покритието параметърът R_a намалява средно с 20% спрямо чистата повърхнина, а след втория цикъл – средно с 25% спрямо *R_a* след първия цикъл. В сеченията без локални дефекти ефективността на покритието след втория цикъл на нанасяне е оше по-висока.

5. Литература

- [1] Stewart T. D., Tipper J. L., Insley G., Streicher R. M., Ingham E., Fisher J. Longterm wear of ceramic matrix composite materials for hip prostheses under severe swing phase
- microseparation. J Biomed Mater Res B Appl Biomater 2003;66(2):567
- [2] H. Czichos, K.-H. Habig, Tribologie -Handbuch (Tribology handbook), Vieweg Verlag, Wiesbaden, 2nd edition, 2003, ISBN 3-528-16354-2
- [3]Marti A., *Inert bioceramics* (*Al*₂*O*₃, *ZrO*₂) *for medical application*, Injury, Int. J. Care Injured, vol. 31 (2000), S-D33-36.
- [4] T. V. Tamaraiselvi and S. Rajeswari, Biological Evaluation of Bioceramic Materials – A Rewiev, Trends Biomater. Artif. Organs, vol. 18 (10, PP. 9-17 (2004)

- [5] P. N. De Aza, A. H. De Aza, S. De Aza, *Crystalline Bioceramic Materials*, Bol. Soc. Esp. Ceram. V., 44 [3] 135-145 (2005)
- [6] Sunho Oh, Namsik Oh, Mark Appleford, Joo L. Ong, *Bioceramics for Tissue Engineering Applications – A Review*, American Journal of Biochemistry and Biotechnology 2 (2): 49-56, 2006, ISSN 1553-346.
- [7] D. K. Teodosiev, V. P. Petkov, R. V. Valov, J. S. Georgiev, M. Selecka, S. G. Stefanov, P. T. Tzvetkov, "Composite Material on Al₂O₃ Basis Coated with Vitreous Carbon for Medical Needs", -Powder Metallurgy Progress, 2011, Vol. 11 N3-4, p 326-329.
- [8] Д. Теодосиев, Й. Георгиев, Н. Петров, Р. Митева, Х. Николова, Оптимизиране процеса на покриване на прототипи на глави за ендопротези с наноразмерен слой стъкловъглерод, за достигане на максимална гладкост на работните повърхности, XXI Национална конференция с международно участие ДЕФЕКТОСКОПИЯ-2012, Созопол, 12-15 юни 2012, Сборник доклади, ISSN 1310-3946, №1 (130), приета за печат.
- [9] Jordanova M., D. Teodosiev, J. Georgiev, Composite ceramic materials based on vitreous carbon as transplantation materials in the human organism – Obtaining and structure, Acta morphologica et antropologica, vol. 6, 2001, pp. 64-69.
- [10] Georgiev J., M. Selecka, J. Durisin, S. Gyurov, D. Teodosiev, E. Bendereva, A New Precursor for Synthesis of Refractory Metal Carbides, Powder Metallurgy Progress, vol.6 (2006), 1, pp.26-33
- [11] J. Georgiev, M. Selecka, J. Durisin, St. Gyurov, E. Bendereva, Formation of TiC from TiO₂ Coated by Hydrocarbon, Cб. Доклади на XXI Национална конференция с межд. участие ДЕФЕКТОСКОПИЯ-2006, Созопол, 12-15 юни 2006, 89-93
- [12] Jordan Georgiev, Ekaterina Bendereva, Marcela Selecka, Juraj Durisin, Stoyko Gyurov and Radoslav Valov Reduction Kinetics of TiO₂ Powder Coated with Hydrocarbons - Powder Metallurgy Progress, 2008, Vol. 8 N4, 320-327.

- [13] ISO 4287:1997: Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters.
- [14] Метрология и измервателна техника.-Книга-справочник, т.2, под ред. на Хр. Радев, Софтрейд, София 2010, ISBN 978-954-334-093-4, с. 450.

[15]

- http://www.bcmac.com/pdf_files/surface% 20 finish%20101.pdf, Basic Components & Elements of Surface Topography. (03.07.2012)
- [16] БДС EN ISO 21534:2007: Non-active surgical implants – Joint replacement implants – Particular requirements. (Неактивни хирургически импланти. Импланти, заместващи стави. Специфични изисквания.
- [17] ISO 7206-2:1996 Implants for surgery Partial and total hip joint prostheses, Part 2: Articulating surfaces made of metallic, ceramic and plastics materials.
- [18] TESA RUGOSURF10G Surface roughness gage <u>http://www.swissinstruments.com/</u> <u>downloads /</u>metrology_surface_rough.pdf (05.06.2012)

Данни за авторите

Иванка Иванова Калиманова, магистър, Физична оптика (Харковски университет, 1969), доцент д-р (1991, 1987); кат. "Прецизна техника и уредостроене", Машиностроителен факултет, Технически университет – София; оптични, оптикоелектронни и лазерни уреди, метрология, оптични измервания.

Димитър Кирилов Теодосиев, магистър, Физика на плазмата (Физически факултет на СУ София, 1973), доцент д-р (2001, 1997); секция "Космическа физика", ИКИ – БАН; ИЗМИРАН – АН на Русия, Москва; методи и сензори за измерване на електромагнитни полета в околоземната плазма, композиционни материали, космическо уредостроене.

Димитър Иванов Дяков, Машинен инженер – "Механично уредостроене" (1984), доктор, доцент, (2001, 2005), кат. "Прецизна техника и уредостроене", Маши-

ностроителен	факултет,	Техничес	ски	уредостроене"	, ТУ	-	София	(2006),
университет –	София;	метрология	И	асистент, Ма	ашиност	роит	елен ф	ракултет,
метрологично ос	игуряване,	финомеханич	на	Технически	универ	сите	т —	София;
и микротехника.				метрология,	ОПТИ	чни	ИЗМ	ервания.
Христиана	Николова	, Машин	нен					
инженер –	"Машин	остроене	И					

STUDY OF THE INFLUENCE OF THE GLASS – CARBON COATING ON THE MICRO-TOPOGRAPHY OF THE ARTICULATING SURFACES OF CERAMIC IMPLANTS

Ivanka Kalimanova¹⁾, Dimitar Teodosiev²⁾, Dimitar Diakov³⁾, Hristiana Nikolova⁴⁾ ¹⁾TU-Sofia, Kl. Ohridski blvd. 8. Sofia 1000, Bulgaria; e-mail: <u>diakov@tu-sofia.bg</u>

¹⁾TU-Sofia, Kl. Ohridski blvd. 8. Sofia 1000, Bulgaria; e-mail: <u>diakov@tu-sofia.bg</u>
²⁾ SR&TI–BAS, Acad. G.Bonchev Str. Bl.1, 1113 Sofia, Bulgaria; e-mail:<u>dteod@space.bas.bg</u>
³⁾ TU-Sofia, Kl. Ohridski blvd. 8. Sofia 1000, Bulgaria, 1000; e-mail: : <u>hristqna@abv.bg</u>

⁴⁾ TU-Sofia, Kl. Ohridski blvd. 8. Sofia 1000, Bulgaria; e-mail: rosimiteva@hotmail.com

Abstract: The report presents the results of measurements of the roughness of the articulating surfaces of ceramic ball heads. The influence of the glass-carbon coating on the surface micro-topography at the different stages of deposition of layers is studied.

Key-Words: ceramic implants, glass-carbon coating, roughness, measurement