
Calculation of the Acceleration of Parallel Programs

as a Function of the Number of Threads

GEORGE POPOV
1
, NIKOS MASTORAKIS

2
, VALERI MLADENOV

3

1
Faculty of Computer Systems and Control

Technical University of Sofia; Sofia 1000, “Kliment Ohridski” blvd. 8; BULGARIA

e-mail: popovg@tu-sofia.bg

2
English Language Faculty of Engineering

Technical University of Sofia; Sofia 1000, “Kliment Ohridski” blvd. 8; BULGARIA

e-mail: mastor@wseas.org

3
Department of Theoretical Electrical Engineering

Technical University of Sofia; Sofia 1000, “Kliment Ohridski” blvd. 8; BULGARIA

e-mail: valerim@tu-sofia.bg

Abstract: - The purpose of this study is to determine analytically what and how acceleration from paralleling execution

of a task depends. It is reasonable if level of parallelism is increased, the costs of synchronization will be increased also

and upon reaching a certain degree of granulation acceleration of multi-program execution starts to decrease.

Key-Words: - Multiprogramming, parallel execution, granulation, acceleration, speed up, process, thread, Amdahl's

Law

1 Introduction
Splitting a task into subtasks that run in parallel (on

different types of parallel systems) is a basic way to

reduce the time of its implementation. However, the use

of parallel algorithms has its price – there are loses of

processing time for system operations that hosts the

parallel execution of the tasks – parallelization and

synchronization, i.e. computer system will be often in a

system mode instead of performing user tasks.

In academic and scientific literature there are number

of studies showing that increasing the number of

processors (respectively the tasks performed on these

parallel processes or threads) does not result in direct

proportion to increase productivity [1,2,3,4,5,6,8].

Similar statements are applied in the theory of

organization of human's productivity – if n times more

people are engaged for certain operation, it won't be

finished n times faster.

This dependency is shown at Fig.1.

For acceleration of parallel treatment Amdahl

suggests the following equation [7,9,10], which is

known as Amdahl's Law:

(1)








 −
+

=

n

S
S

Acc
)1(

(

1
,

where:

S is the percentage of the work that cannot be

parallelized;

n is number of processors.

Free Amdahl's Law simulator is suggested for use in

[11].

Fig.1. Application speedup as a function of number of

threads (Figure is captured from [1], p 464, fig.10.4)

LATEST TRENDS on COMPUTERS (Volume II)

ISSN: 1792-4251 411 ISBN: 978-960-474-213-4

What other factors does the acceleration depend on?

If it is possible to split a task indefinitely, where is the

optimum? What is right amount of the threads? If

parallel segments become very small, the cost of the

system resources for their management will be

significant. This problem is described in details in the

scientific literature, but unfortunately there aren’t any

derived mathematical formulas to support the

conclusions.

2 Parallel Processing Model

The following abstractions are made in this paper:

• task (program, process) can be divided into an

unlimited number of parallel sections (processes,

threads);

• computer system is used with an unlimited number

of processing elements – cores, processors or separate

computer systems arranged in a cluster architecture,

only relevant system costs are recorded and the actual

system architecture is not discussed;

• tasks are not blocked (they aren’t waiting for

resources used by other tasks);

• the level of parallelism is not specified in the

current calculations – processes or threads, the

conclusions made are relevant for both of them.

By increasing the coefficient of parallelism of

treatment is possible to decrease the productivity as the

volume of the executed system code increases.

Fig. 2 gives a Gantt's chart for the parallel

implementation of the hypothetical task.

Fig.2. Typical implementation of the parallel task

Assuming (Fig. 3) that a segment of a task can be

divided into a number n of parallel sections with a

duration tp, then execution time will be determined by

the longest stretch system costs plus time for the

organization of parallelism (primitives such as fork) and

synchronization (waitings) (see equation (2)).

Fig.3. A parallel segment of the task

(2) snt ttttt +=),...,,max(21 ,

where:

nttt ,...,, 21 are durations for separated sections;

 ts are system costs for the organization of

parallelism.

If the equation is applied for the general case, as

illustrated on Fig.1 it will be written as:

(3) si

n

i int ttttt +=∑ =1 21),...,,max(

,

where:

 inttt),...,,max(21 is the maximum length of

each segment;

 tsi are system costs for organization of

parallelism.

Equation (3) corresponds to Amdahl's Law, but in

this case n = 1 implies a single section.

If the volume of the source code of the individual

sections is Qi, and the systematic tools for organizing the

parallelism is Qs and productivity of the system is P,

equation (3) will be:

(4) i
P

Q

P

Q

P

Q

P

Q
t sn

i i
n

t +=∑ =1

21),...,,max(

or

(5) is

n

i it QnQQQ
P

t += ∑ =1 21),...,max(
1

If the entire task would be implemented in a system

without multi-tasking, it would be executed for:

(6)
P

Q
Q

P
tt

n

i i

n

i it === ∑∑ == 11

1
,

 where Q is the volume of entire task code

Acceleration coefficient Ka (speed up) at the parallel

execution of this task is:

LATEST TRENDS on COMPUTERS (Volume II)

ISSN: 1792-4251 412 ISBN: 978-960-474-213-4

(7)

is

n

i i

n

i i

a

QnQQQ
P

Q
PК

+

=

∑

∑

=

=

1 21

1

),...,max(
1

1

or

(8)

is

n

i i

n

i i

a

QnQQQ

Q
К

+
=
∑

∑

=

=

1 21

1

),...,max(

In the ideal case, the task is divided into equal

number of sections n and equation (8) can be written in

the following form:

(9)

s

a

nQ
n

Q

Q
К

+
= ,

where Q is the volume of the whole task.

After processing, the equation (9) can be presented

as:

(10)

s

a
QnQ

nQ
К

2+
=

The results of equation (10) at Q = 10 000, Qs = 20

and n (1,2, .., 65) are shown on Fig.4.

Fig.4. Graphical view of Ka = f (n)

(dependence on formula (9))

It is clear that in the case of mono program

implementation the acceleration factor Ka is equal to 1.

By increasing the level of parallel processing (up to n =

22) system acceleration increases to 11 and then

gradually declines.

The first derivative of (10) gives n to change the

effectiveness of the task's splitting:

(11)

22

2

22

22

22

22
'

)(

)(

)(

)(

2)(

s

s

s

s

s

ss
a

QnQ

QnQ
Q

QnQ

QQnQ

QnQ

QQnQnQQ
К

+

−
=

+

−
=

=
+

−+
=

The result is shown at fig.5. (at Q=10000, Qs=20 и

n∈(1,2,..,65))

As can be observed for values of n> 22 the

acceleration starts to decrease.

If the expression (11) is aligned to zero, the value of

maximum acceleration can be determined analytically

which can be obtained by splitting the task of n parts (at

fixed volume of system's primitives).

(12) 0
)(

)(
22

2

=
+

−

s

s

QnQ

QnQ
Q

(13) 02 =− sQnQ

(14)
sQ

Q
n =

If formula (14) is substituted with the values used for

plotting the dependences of Fig.3 and Fig.4 (Q = 10,000,

Qs = 20), it gives:

(15) 36068,22
20

10000
==

s

n ,

 which confirms the above charts.

Experiments are carried on a multicomputer parallel

platform comprising 7 workstations (Intel Pentium 4,

3.2GHz, 1G RAM, Hyper-Threading) connected via Fast

Ethernet switch (100 Mbps) running program

LATEST TRENDS on COMPUTERS (Volume II)

ISSN: 1792-4251 413 ISBN: 978-960-474-213-4

implementation of genetic algorithms. In first case there

are 32 iterations in each thread, and in the second there

are 128 iterations.

Fig.6. Experimental results with 7 workstations

In this case there is a maximum of acceleration at

number of threads equal to 7. It can be seen the

effectiveness of parallel treatment is greater at larger

number of iterations.

4 Conclusion
Analytical dependence determining the maximum

acceleration that can be obtained by dividing a task into

subtasks is derived in this article, taking into account the

size of the subtasks and the volume of code for system

calls, used for realization of the parallelism.

The calculations are particularly relevant for clusters

in which the relatively weak connectivity between

computer systems (as opposed to systems with shared

memory) leads to significant synchronization costs.

The obtained results are approximated – an

assumption is made that the main task can be divided

into any number of subtasks of equal length, which is

practically impossible.

References:

[1] W. Stallings, Operating Systems: Internals and

Design Principals 6/e, Pearson Education, 2009,

Singapore.

[2] Silberschatz, Galvin, Gagne,Greg. Operating

Systems Concepts, John Wiley & Sons, 2008.

[3] A.Tannenbaum, Modern Operating Systems,

Prentice Hall, 2009

[4] Arch D. Robison, Why Too Many Threads Hurts

Performance, and What to do About It? Intel

Corporation, April 6, 2007

[5] Aviad Ezra, Concurrency Levels Tuning with Task

Parallel Library (How Many Threads to Use?)

October 18, 2009,

http://aviadezra.blogspot.com/2009/10/how-many-

threads-tpl-concurrency.html

[6] Joe Duffy, Using concurrency for scalability, MSDN

Magazine , Issues, 2006, September

[7] Amdahl, G.M. Validity of the single-processor

approach to achieving large scale computing

capabilities. In AFIPS Conference Proceedings vol.

30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press,

Reston, Va., 1967, pp. 483-485.

[8] http://youandunix.com, scaling limitation factors,

August 18th, 2009

[9] Jardin V., How should Amdahl’s law drive the

redesigns of socket system calls for an OS on a

multicore CPU?,

http://www.multicorepacketprocessing.com, May

21st, 2010

[10] Gustafson, J.L., Reevaluating Amdahl’s Law,

CACM, 31(4. 5), 1988. pp. 532-533.

[11] http://demonstrations.wolfram.com/AmdahlsLaw/

[12] A. Srinivasan and J. Anderson. Optimal rate-based

scheduling on multiprocessors. In Proceedings

of the 34th ACM Symposium on Theory of Computing,

pages 189–198, May 2002.

[13] S. Lauzac, R. Melhem, and D. Mosse. An efficient

RMS admission control and its application to

multiprocessor scheduling. In Proceedings of the

12th International Symposium on Parallel

Processing, pages 511–518, April 1998.

LATEST TRENDS on COMPUTERS (Volume II)

ISSN: 1792-4251 414 ISBN: 978-960-474-213-4

