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Abstract: -  The purpose of this study is to determine analytically what and how acceleration from paralleling execution 

of a task depends. It is reasonable if level of parallelism is increased, the costs of synchronization will be increased also 

and upon reaching a certain degree of granulation acceleration of multi-program execution starts to decrease. 
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1   Introduction 
Splitting a task into subtasks that run in parallel (on 

different types of parallel systems) is a basic way to 

reduce the time of its implementation. However, the use 

of parallel algorithms has its price – there are loses of 

processing time for system operations that hosts the 

parallel execution of the tasks – parallelization and 

synchronization, i.e. computer system will be often in a 

system mode instead of performing user tasks. 

In academic and scientific literature there are number 

of studies showing that increasing the number of 

processors (respectively the tasks performed on these 

parallel processes or threads) does not result in direct 

proportion to increase productivity [1,2,3,4,5,6,8]. 

Similar statements are applied in the theory of 

organization of human's productivity – if n times more 

people are engaged for certain operation, it won't be 

finished n times faster. 

This dependency is shown at Fig.1. 

For acceleration of parallel treatment Amdahl 

suggests the following equation [7,9,10], which is 

known as Amdahl's Law: 
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where: 

S is the percentage of the work that cannot be 

parallelized; 

n is number of processors. 

Free Amdahl's Law simulator is suggested for use in 

[11]. 

 

 
Fig.1. Application speedup as a function of number of 

threads (Figure is captured from [1], p 464, fig.10.4) 
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What other factors does the acceleration depend on? 

If it is possible to split a task indefinitely, where is the 

optimum? What is right amount of the threads? If 

parallel segments become very small, the cost of the 

system resources for their management will be 

significant. This problem is described in details in the 

scientific literature, but unfortunately there aren’t any 

derived mathematical formulas to support the 

conclusions. 

      

2   Parallel Processing Model 
 

The following abstractions are made in this paper: 

• task (program, process) can be divided into an 

unlimited number of parallel sections (processes, 

threads); 

• computer system is used with an unlimited number 

of processing elements – cores, processors or separate 

computer systems arranged in a cluster architecture,  

only relevant system costs are recorded and the actual 

system architecture is not discussed; 

• tasks are not blocked ( they aren’t waiting for 

resources used by other tasks); 

• the level of parallelism is not specified in the 

current calculations – processes or threads, the 

conclusions made are relevant for both of them. 

By increasing the coefficient of parallelism of 

treatment is possible to decrease the productivity as the 

volume of the executed system code increases. 

Fig. 2 gives a Gantt's chart for the parallel 

implementation of the hypothetical task. 

 

 

 
Fig.2. Typical implementation of the parallel task 

 

Assuming (Fig. 3) that a segment of a task can be 

divided into a number n of parallel sections with a 

duration tp, then execution time will be determined by 

the longest stretch system costs plus time for the 

organization of parallelism (primitives such as fork) and 

synchronization (waitings) (see equation (2)). 

 

 

 
 

Fig.3. A parallel segment of  the task 
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where: 

nttt ,...,, 21  are durations for separated sections; 

  ts are system costs for the organization of 

parallelism. 

  

If the equation is applied for the general case, as 

illustrated on Fig.1 it will be written as: 
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where: 

  inttt ),...,,max( 21  is the maximum length of 

each segment; 

  tsi are system costs for organization of 

parallelism. 

 

Equation (3) corresponds to Amdahl's Law, but in 

this case n = 1 implies a single section. 

If the volume of the source code of the individual 

sections is Qi, and the systematic tools for organizing the 

parallelism is Qs and productivity of the system is P, 

equation (3) will be: 
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If the entire task would be implemented in a system 

without multi-tasking, it would be executed for: 
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 where Q is the volume of entire task code 

 

Acceleration coefficient Ka (speed up) at the parallel 

execution of this task is: 
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or  
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In the ideal case, the task is divided into equal 

number of sections n and equation (8) can be written in 

the following form: 
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where Q is the volume of the whole task. 

 

After processing, the equation (9) can be presented 

as: 
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The results of equation (10) at Q = 10 000, Qs = 20 

and n (1,2, .., 65) are shown on Fig.4. 

 

 

 
 

Fig.4. Graphical view of Ka = f (n)  

(dependence on formula (9)) 

 

It is clear that in the case of mono program 

implementation the acceleration factor Ka is equal to 1. 

By increasing the level of parallel processing (up to n = 

22) system acceleration increases to 11 and then 

gradually declines. 

The first derivative of (10) gives n to change the 

effectiveness of the task's splitting: 
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The result is shown at fig.5. (at  Q=10000, Qs=20 и 

n∈(1,2,..,65)) 
  

 
 

As can be observed for values of n> 22 the 

acceleration starts to decrease. 

If the expression (11) is aligned to zero, the value of 

maximum acceleration can be determined analytically 

which can be obtained by splitting the task of n parts (at 

fixed volume of system's primitives). 
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If formula (14) is substituted with the values used for 

plotting the dependences of Fig.3 and Fig.4 (Q = 10,000,  

Qs = 20), it gives: 
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 which confirms the above charts. 

 

Experiments are carried on a multicomputer parallel 

platform comprising 7 workstations (Intel Pentium 4, 

3.2GHz, 1G RAM, Hyper-Threading) connected via Fast 

Ethernet switch (100 Mbps) running program 
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implementation of genetic algorithms. In first case there 

are 32 iterations in each thread, and in the second there 

are 128 iterations. 

 

 
Fig.6. Experimental results with 7 workstations 

 

In this case there is a maximum of acceleration at 

number of threads equal to 7. It can be seen the 

effectiveness of parallel treatment is greater at larger 

number of iterations. 

 

4   Conclusion 
Analytical dependence determining the maximum 

acceleration that can be obtained by dividing a task into 

subtasks is derived in this article, taking into account the 

size of the subtasks and the volume of code for system 

calls, used for realization of the parallelism. 

The calculations are particularly relevant for clusters 

in which the relatively weak connectivity between 

computer systems (as opposed to systems with shared 

memory) leads to significant synchronization costs. 

The obtained results are approximated – an 

assumption is made that the main task can be divided 

into any number of subtasks of equal length, which is 

practically impossible. 

 

References: 

 

[1] W. Stallings, Operating Systems: Internals and 

Design Principals 6/e, Pearson Education, 2009, 

Singapore. 

[2] Silberschatz, Galvin, Gagne,Greg. Operating 

Systems Concepts, John Wiley & Sons, 2008. 

[3] A.Tannenbaum, Modern Operating Systems, 

Prentice Hall, 2009 

[4] Arch D. Robison, Why Too Many Threads Hurts 

Performance, and What to do About It? Intel 

Corporation, April 6, 2007 

[5] Aviad Ezra, Concurrency Levels Tuning with Task 

Parallel Library (How Many Threads to Use?) 

October 18, 2009, 

http://aviadezra.blogspot.com/2009/10/how-many-

threads-tpl-concurrency.html 

[6] Joe Duffy, Using concurrency for scalability, MSDN 

Magazine , Issues, 2006, September  

[7] Amdahl, G.M. Validity of the single-processor 

approach to achieving large scale computing 

capabilities. In AFIPS Conference Proceedings vol. 

30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, 

Reston, Va., 1967, pp. 483-485. 

[8] http://youandunix.com, scaling limitation factors, 

August 18th, 2009 

[9] Jardin V., How should Amdahl’s law drive the 

redesigns of socket system calls for an OS on a 

multicore CPU?, 

http://www.multicorepacketprocessing.com, May 

21st, 2010 

[10] Gustafson, J.L., Reevaluating Amdahl’s Law, 

CACM, 31(4. 5), 1988. pp. 532-533. 

[11] http://demonstrations.wolfram.com/AmdahlsLaw/ 

[12] A. Srinivasan and J. Anderson. Optimal rate-based 

scheduling on multiprocessors. In Proceedings 

of the 34th ACM Symposium on Theory of Computing, 

pages 189–198, May 2002. 

[13] S. Lauzac, R. Melhem, and D. Mosse. An efficient 

RMS admission control and its application to 

multiprocessor scheduling. In Proceedings of the 

12th International Symposium on Parallel 

Processing, pages 511–518, April 1998. 

 

LATEST TRENDS on COMPUTERS (Volume II)

ISSN: 1792-4251 414 ISBN: 978-960-474-213-4




