Compact Model of HfO$_2$-Ta$_2$O$_5$ capacitor in Verilog-A

George Vasilev Angelov

Abstract - A circuit simulation compact model of a MOS capacitor made of high-k HfO$_2$–Ta$_2$O$_5$ stack layers is coded in Verilog-A. The model is based on the BSIM3v3 core. C–V and I–V characteristics are simulated in Cadence Spectre circuit simulator and validated against experimental measurements of the HfO$_2$–Ta$_2$O$_5$ stack structure.

Keywords – Compact model, high-k gate dielectric, Verilog-A

I. INTRODUCTION

Significant challenges arise when bulk CMOS devices are scaled into the sub-100 nm regime following the Moore’s law. The scaling of gate dielectric itself also poses a great challenge. As the physical thickness of the SiO$_2$ gate dielectric (t_{ox}) is scaled beyond 1.2 nm, quantum mechanical tunneling current from the gate into the channel becomes significant [1]. Further reduction in t_{ox} results in large static leakage current and large power consumption even when the device is turned off. Therefore at around the 45 nm technology node, a gate dielectric with high permittivity (high-k dielectrics) is often used to scale down the effective oxide thickness (EOT) without increasing the gate tunneling current. Besides high gate tunneling leakage current, the problems of polysilicon (poly-Si) gate depletion, high gate resistance, and boron penetration into the channel region also become more severe as the channel length and gate-oxide thickness are aggressively reduced. Therefore, there is vast interest in alternative high-k gate dielectrics [2]. Prospective candidates for alternative high-k dielectrics are the multicomponent gate stacks based on a combination of metal oxides. Ta$_2$O$_5$ is one of the most promising high-k materials for storage capacitors in nanoscale dynamic random access memories (DRAMs) while HfO$_2$ appears to be the respective candidate for nano-MOSFETs [3], [4], [5]. The electrical characteristics prove that the structure composed of HfO$_2$–Ta$_2$O$_5$ mixed layer on Si performs as a high-k layer in terms of permittivity, level of leakage current, and appropriate oxide interface properties [6].

In this paper we present a compact model of the high-k MOS capacitor HfO$_2$–Ta$_2$O$_5$ mixed layer structure from [6]. The model is implemented in Verilog-A HDL code based on the BSIM3v3 model equations. Capacitance–voltage (C–V) and current–voltage (I–V) characteristics are validated versus real measurements.

II. VERILOG-A MODEL AND PARAMETER EXTRACTION

Our model has the following input parameters – gate area, oxide thickness, and relative dielectric permittivity, substrate doping concentration (N_{sub}) and in the channel (N_d), flatband voltage (V_{FB}) and interface trap level density (D_i).

Two MOS stacks are fabricated with thicknesses of the HfO$_2$–Ta$_2$O$_5$ layer of 10 and 15 nm. Their C–V and I–V characteristics are measured in [6], which allows the modeling of two physical quantities: capacity and leakage current between the gate and bulk electrodes. The C–V measurements are given in Fig. 1. Frequency range of 50 kHz ÷ 100 kHz is selected in order to minimize the effects of the equivalent series-parallel circuit – at lower frequencies the role of the parallel shunting resistance is increasing while at higher frequencies the series substrate resistance is becoming an important factor [7].

The model is based on the analytic compact model of BSIM3v3. Although BSIM3v3 is known for its extremely complicated intrinsic capacitance model we used it as base for our model equations because our technology design kit is using BSIM3v3 for the embedded models. Besides BSIM3v3 model allows relatively easy applicability across different technologies.

Below we provide an excerpt of the Verilog-A code of the model we developed.

```
// Device Parameters //
parameter real L = 100.0e-6;
parameter real W = 100.0e-6;
parameter real TYPE = 1.0;
parameter real TOX = 100.0e-10;
real acde, tox, cow, nch, tnom, vgs, Vgs;
real l, w, delta_3_1, delta_3_2;
```

G. Angelov is PhD, assistant professor with the Dept of Microelectronics FETT, Technical University of Sofia, 8 Kliment Ohridski blvd., 1797 Sofia, Bulgaria
e-mail: gva@ecad.tu-sofia.bg
real Vtm0, T0, T1, T2, T3, tmp;
real nsub, gamma2, k1, vfb, ldeb;

// Charge model related variables
real qgate, Qgate, Qsub0;
real cqgate;
real Vfb, CoxWL, Qac0, Vfbeff;
real Cox, V3, Tox, Coxeff, CoxWLcen, Tcen,
 Ccen, LINK, V4;
// Leakage model related variables
real igate, a1, b1;

// Calculation of the charge in accumulation //
Tox = 1.0e8 * tox;
T0 = (Vgs - vfb) / Tox;
tmp = T0 * acde;
Tcen = ldeb * exp(tmp);
LINK = 1.0e-3*tox;
V3 = ldeb - Tcen - LINK;
V4 = exp(0.5*ln(V3*V3 + 4.0 * LINK * ldeb));
Tcen = ldeb - 0.5 * (V3 + V4);
Ccen = `EpsSi / Tcen;
T2 = Cox / (Cox + Ccen);
Coxeff = T2 * Ccen;
CoxWLcen = CoxWL * Coxeff / Cox;
Qac0 = CoxWLcen * (Vfbeff - vfb);

// Calculation of the charge in depletion //
T0 = 0.5 * k1;//ok119
T3 = Vgs - Vfbeff;
if (T3 < 0.0)
begin
T1 = T0 + T3 / k1;
end
else
begin
T1 = exp(0.5*ln(T0 * T0 + T3));
end
Qsub0 = CoxWLcen * k1 * (T1 - T0);

// The following statements replace Qac0 with Qsub0 for the depletion region //
if((vfb-vgs)<=-0.15)
qgate = Qsub0;
else
qgate=Qac0;

// Expressing the current as first derivative of the charge //
Qgate = qgate;
cqgate = TYPE * ddt(Qgate);
I(gate, bulk) <+ cqgate;

// IV model //
if (tox < 12.5e-9)
begin
 a1 = `A1;
 b1 = `B1;
end
else
begin
 a1 = `A2;
 b1 = `B2;
end

if((vfb-Vgs) >= -0.25)
igate = a1*exp(-b1*Vgs)*w*1/(100e-6*100e-6);
if ((vfb-Vgs) < -0.25)
igate = (`a2 + `b2*Vgs)*w*1/(100e-6*100e-6);
I(gate, bulk) <+ igate;

To adjust the model all parameters need to be properly extracted from measurement data. The developed model has the following input parameters – gate oxide area, thickness of dielectric, and type of bulk conductivity (P- or N-type). Other important parameters are the effective permittivity, substrate doping concentration, and flat band voltage. The effective permittivity is analyzed in [6] where it is extracted as $\varepsilon_{eff} = 9$ from the 100 kHz $C–V$ curve. The methodology, described in [9], provides an easy way for calculation of the doping concentration and the flat band voltage. The substrate doping concentration (N_{SUB}) is related to the slope of the $1/C^2$ curve versus the V_B bias voltage [9]. The flat band voltage and doping concentration profile were not explicitly extracted from measurements due to the low accuracy of the method for bigger values of the interface trap density ($0.5 \div 1 \times 10^{12} \text{cm}^{-2} \text{eV}^{-1}$ according to [7]). These parameters were fitted in the model according to the measurements.

III. PARAMETER FITTING

The initial model should be fitted in order to minimize the error with respect to the measurements. An accurate assessment of the fitting is given by calculating the integral error which is calculated as an average of the errors inside each interval.

Analyzing the model equations it turns out that the following parameters need to be fitted:
- $acde$ – influence in accumulation and depletion regions.
- nch – influence in accumulation and depletion regions.
- δ_3_1 – influence in depletion region by changing the slope of the curve (visible for $nch > 10^{16} \text{cm}^{-3}$).
- Vfb and δ_3_2 – these parameters shift the curve across the x-axis (i.e. the applied bias voltage), therefore they have influence in depletion region.

The fitting starts with flat-band voltage (Vfb). Then the surface doping concentration (nch) is fitted in accumulation region together with the $acde$ parameter. Further fitting of the slope in depletion region is done by varying δ_3_1 and δ_3_2 only. The fitting parameters in the corresponding regions of the $C–V$ curve are depicted in Fig. 2.

The fitted parameters values are given in Table I. The $C–V$ measurements fit very well with the simulation results for $Qsub0$ for bias voltage greater than – 0.4 V. Therefore the expressions of the charge $Qac0$ can be replaced with the expressions of $Qsub0$ for $Vgs \geq Vfb + 0.15$.
TABLE 1. FITTED PARAMETER VALUES DESCRIBING THE C-V CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Bias Voltage Range [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vfb</td>
<td>−0.55 V</td>
<td>(−∞, +∞)</td>
</tr>
<tr>
<td>nch</td>
<td>1.25×10¹⁸ cm⁻³</td>
<td>(−∞, +∞)</td>
</tr>
<tr>
<td>delta_3_1</td>
<td>0.02 V</td>
<td><(V_{FB}−1.2)</td>
</tr>
<tr>
<td>delta_3_1</td>
<td>0.028 V + 0.048 V</td>
<td>(V_{FB}−1.2) ÷ (V_{FB}−0.05)</td>
</tr>
<tr>
<td>delta_3_1</td>
<td>0.038 V + 0.016 V</td>
<td>(V_{FB}−0.05) ÷ (V_{FB}−0.11)</td>
</tr>
<tr>
<td>delta_3_2</td>
<td>0.01 V</td>
<td>>(V_{FB}−0.11)</td>
</tr>
<tr>
<td>delta_3_2</td>
<td>0.02 V</td>
<td><(V_{FB}−1.45)</td>
</tr>
<tr>
<td>delta_3_2</td>
<td>0.24 V</td>
<td>>(V_{FB}−1.45)</td>
</tr>
</tbody>
</table>
The results of the influence of \(\text{acde}\) and \(\text{nch}\) parameters on the \(C-V\) characteristics are shown on Fig. 3, 4, 5, 6, 7, and 8. The influence of parameters \(\text{delta}_3_1\) and \(\text{Vfb}\) is given in Fig. 9 and 10.

For \(C-V\) characteristics the average integral error between the simulations and measurements curves was calculated to be \(\text{erravg} = 3.35\%\).

The \(I-V\) characteristics are split in two regions with separate current density \(J\) equations: 1) accumulation and depletion region for \(V_{GS} \leq V_{FB} + 0.25\) where the current density follows exponential dependence on the applied bias voltage \((J(V_{GS}) = a_1 e^{-b_1 V_{GS}})\) and 2) inversion region for \(V_{GS} > V_{FB} + 0.15\) where the current density follows linear dependence on the bias voltage \((J(V_{GS}) = a_2 + b_2 V_{GS})\).

The fitted parameters are in Table 2.

Afterwards the \(I-V\) model is validated by parametric analysis versus thickness (Fig. 12). The average integral error between the simulations and measurements for the \(I-V\) characteristics is \(\text{erravg} = 8.83\%\).

IV. CONCLUSION

A compact model of a high-\(k\) \(\text{HfO}_2-\text{Ta}_2\text{O}_5\) stack capacitance structure was developed in Verilog-A proceeding from the BSIM3v3 model core. The model was implemented in Cadence Spectre circuit simulator.

The Verilog-A compact model of the \(\text{HfO}_2-\text{Ta}_2\text{O}_5\) mixed layer showed very good agreement to the experimental measurements for both the \(C-V\) and \(I-V\) characteristics. This proves the applicability of the model to state-of-the-art circuit design tools.

ACKNOWLEDGEMENT

This paper is prepared in the framework of Contract No. ДУНК-01/03 dated 12.2009.

REFERENCE

TABLE 2. FITTED PARAMETER VALUES DESCRIBING THE C-V CHARACTERISTICS

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>10 nm thickness</th>
<th>15 nm thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(1.0 \times 10^{-11})</td>
<td>(2.0 \times 10^{-13})</td>
</tr>
<tr>
<td>(b_1)</td>
<td>3.3</td>
<td>4.8</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(8.0 \times 10^{-12})</td>
<td></td>
</tr>
<tr>
<td>(b_2)</td>
<td>(2.0 \times 10^{-11})</td>
<td></td>
</tr>
</tbody>
</table>