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Abstract: In practice, when analysing, processing and generating signals, it is often assumed, that the process is of 
type “pulse source - filter”. Examples include the speech production process according to the theory of Fant, 
analysis  of  shockwaves,  ECG,  EEG,  seismology.  For  determination  of  the  parameters  of  the  filter  many  
methods exist, most of which require the assumption of linear, all-pole model of the filter. It dates from the 
time  when  the  computational  power  of  the  processing  systems  was  very  low.  From  the  50-s  on,  many  
computational effective algorithms have been created. Their complexity is almost an order smaller 
compared to those, using other models of the filter. In frequency domain the all-pole filter describes very 
well the processes, for which it has been created.  In most of the practical solutions it has became classics, 
and what follows is his application for other purposes, for which it may be inappropriate. In this paper, some 
general properties in the application of linear all-pole filter and pulse-source for generating of periodical 
signal are reviewed. These properties explain some phenomena of the modelled real process and give better 
interpretation for the constraints, which come out from the implementation of such model. 

1 INTRODUCTION 

A “pulse source – filter” model could be represented 
as shown on fig.1: 

 
Figure 1: A “pulse source – filter” model. 

 
The observed signal S(s) is defined by the 
parameters of the filter H(s), excitation pulses E(s) 
and  by  the  noise   Z(s)  (Fant   G.,  1990.  In  practice  

statistical methods of autocorrelation and 
autocovariation are used (Epsy-Willson et.al, 2006, 
Prasana, S., et.al, 2006). If for sake of clarity we 
don’t take into account the additive input noise, the 
generation of the signal in z-domain could be written 
as: 

 
(ݖ)ܵ =  (ݖ)ܪ(ݖ)ܧ

(ݖ)ܵ = ,{(ܶ݊)ݏ}ܼ (ܶ݊)ݏ = (ݐ)ݏ ቤݐ = ݊ܶ
� 

 

(1) 

 
Without ignoring the importance of the derived 
conclusions, we can assume H(z) as a all-pole filter 
(Titze, 1984): 

 

(ݖ)ܪ =
1

1 +∑ ܽିݖெ
ୀଵ

 (2) 



 

The problem of finding the coefficients of the 
filter ܽ , ݅ =  .തതതതതത can be defined as signal analysisܯ,1
If the input of the filter with transfer function H(z) is 
a delta impulse, the output will be  an envelope of a 
signal element, modelled with the current filter 
coefficients. The model of the signal analysis:  

 
(ݖ)ܧ =  (3) (ݖ)ܣ(ݖ)ܵ

 
uses a filter, inverse with the exciting one, with 
transfer function: 

 

(ݖ)ܣ =
1

(ݖ)ܪ = 1 +ܽିݖ
ெ

ୀଵ

 
(4) 

 
Two approaches for finding of the coefficients of the 
filter are possible – assuming asynchronous 
excitation, and assuming synchronous one. The first 
one assumes that the length of the analysed 
quasistationary intervals is set and known apriory, 
and the second assumes that the length of the 
analysed quasistationary intervals is multiple of the 
of the excitation period.  

The method of linear prediction of M-th order 
(Wiener, 1966) approximates the current value of 
the signal ݏ(݅) from a discrete time series {ݏ(݅)} 
with a linear combination of M preceding values 
with the corresponding weighting coefficients  ܽ:  

 

(݊)ݏ̂ = ܽݏ(݊ − 1)
ெ

ୀଵ

 
(5) 

 
The prediction error is:  

݁(݊) = −(݊)ݏ  (6) (݊)ݏ̂
 

For a signal segment, containing N samples, the 
weighting coefficients can be optimized in such 
way,  that  the  sum  of  squares  of  the  errors  of  
prediction for all N samples is minimal. In this case 
the objective function for the optimization is:  

 
݁ଶ(݊)
ே

= 

ݏ(݊)− ܽݏ(݊ − ݅)
ெ

ୀଵ
൨
ଶ !

=݉݅݊
ே

 

(7) 

 
Setting the partial derivative of the sum of 

squares equal to zero we have the equation:  
 

ܽ

ெ

ୀଵ

ݏ(݊ − ݊)ݏ(݅ − ݇)
ே

= 

ݏ(݊)ݏ(݊ − ݇)
ே

,݇ =  തതതതതതܯ,1

(8) 

 
Two common methods, differing in the limits of 
summation are known: autocorrelation and 
autocovariation. 

The range of summation of the autocorrelation is 	
−∞ < ݊ < ∞ :  

 

 ܽΦ(|݅ − ݇|) = Φ(݇), ݇ = തതതതതതܯ,1
ெ

ୀଵ
 

(9) 

 
with the coefficients of autocorrelation : 

 

Φ(|݅ − ݇|) =  ݊)ݏ − ݊)ݏ(݅ − ݇)
ஶ

ୀିஶ
 (10) 

 
The interval to be analysed is actually 0 < ݊ < ܰ, 
the samples outside it could be eliminated with an 
appropriate window function ݓ(݊), and the 
autocorrelation coefficients 	ܴ(݅), can be evaluated 
as follows: 

  

ܴ(݅) =  ݊)ߞ(݊)ߞ + ݅)
ேିଵି

ୀ
,	 

(݊)ߞ =  ,(݊)ݏ(݊)ݓ
(݊)ݓ = ቄ≠ 0,			0 ≤ ݊ < ܰ

0
� 

݅ =  	തതതതതതܯ.0
	 

(11) 

 
The equality from the condition for unconditional 
optimization becomes: 

 

 ܴܽ(|݅ − ݇|)
ெ

ୀଵ
= ܴ(݇), ݇ =  തതതതതതܯ,1

(12) 

 
and as a matrix notation:  

 
,ଵ,ܽଶܽ)܀ … ,ܽெ)்
= (ܴ(1),ܴ(2), …  ்((ܯ)ܴ,

(13) 

 
The matrix R of the coefficients ܴ(|݅ − ݇|)  is a 

Toeplitz matrix – it is symmetrical and the elements 
in  the  diagonals  are  identical  (Grenader.  U.  et.  al.  ,  
1958) :  



 

܀ = 	

⎝

⎜
⎜
⎜
⎛

	

R(0)										R(1) 						⋯ 				R(M − 1)

R(1)									R(0) 						⋯ 			R(M − 2)

R(2)										R(1) 						⋯ 			R(M− 3)

⋯													⋯										⋯											⋯

R(M − 1)			R(M − 2) 		⋯ 			R(0) ⎠

⎟
⎟
⎟
⎞

 

(14) 

 
There are a lot of methods for solving the system 

of equations. The most effective is the recursive 
method of Durbin, where the number of operations 
grows only with the square of the weighting 
coefficients (Makhoul, J., 1975). 
Because their value is always less than one, the 
poles of the filter will always be within the unit 
circle on the z-plane, which guaranties its stability.  
When using the covariation, the prediction error is 
minimized within the interval 0 < ݊ < ܰ . The 
matrix of the coefficients in general isn’t a Toepliz 
one and the methods for obtaining the filter 
coefficients aren’t so effective (the Cholesky method 
for example (Werner, H, 1975)) and the stability of 
the filter isn’t guaranteed. 

Both the autocorrelation and covariation use the 
same two steps for evaluating the filter coefficients. 
– first they find the coefficients matrix, and then 
solve the system of linear equations (Madisetti V., 
Williams D, 1999). There are other possible 
methods, (for example using lattice structures), 
which combine the two steps. In can be proven 
(Makhoul, J., 1975) that the most effective method is 
the one of Durbin, which is the most preferred 
autocorrelation method. 

2 IMPACT OF THE DURATION 
OF THE EXCITATION PHASE 
TO THE PERIOD OF THE 
SPECTRAL PEAK   

We assume model of the filter is of order two: 
 

(ݏ)ܪ =
݇ଵ߱ଵଶ

ଶݏ + ଵ߱
ଶ 

(15) 

 
This means that the signal will contain only one 
spectral peak  ߱ଵ.  If  the  filter  is  excited   by  a  
sequence of rectangular pulses, described by: 

 
(ݐ)݁

= ቊ
1, (݉ − 1) ܶ ≤ ݐ < excitation_phaseݐ + (݉ − 1) ܶ

0, excitation_phaseݐ + 	(݉ − 1) ܶ ≤ ݐ < ݉ ܶ
� 

݉ = 1, పܰ − 1തതതതതതതതതതതതതത 

(16) 

 
Where ܶ is the excitation period, and 
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣݐ  is the duration of the excitation 
phase. The output signal for the first excitation 
period (m=1) is: 

 
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣݏ
ଵி (ݐ) = ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ

ଵி  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ−

ଵி sin	(߱ଵݐ
+ ߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ

ଵி ) 

(17) 

  
for ݐ <  ,୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ, i.e. in excitation phaseୣݐ

and:  
_௩௧ݏ
ଵி (ݐ) = 

_௩௧ܣ
ଵி sin	(߱ଵݐ + ߮_௩௧

ଵி ) 
(18) 

  
for ݐ ≥ _௩௧ݐ , i.e. in free vibration 

phase, where:  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ

ଵி = ݇ଵ is the constant component of 
the signal in the excitation phase  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ
ଵி = ݇ଵ and  

_௩௧ܣ
ଵி = 2݇ଵsin	(

ఠభ௧౮ౙ౪౪_౦౩

ଶ
) are the 

amplitudes of the signal in excitation phase and in 
the phase of free vibration  
߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ
ଵி = గ

ଶ
 and  

߮_௩௧
ଵி = ߨ2	 −

ఠభ௧౮ౙ౪౪_౦౩

ଶ
 are the 

angular phases of the signal in excitation phase and 
in the phase of free vibration  
߱ଵ = ߨ2 ଵ݂  are the circular frequency, which 
corresponds to the spectral peak ଵ݂ .  
We can observe the following: 

§ The amplitude of the signal in th excitation 
phase depends only on the gain constant of 
the filter  

§ The amplitude of the signal in the phase of 
free vibration depends again on the gain 
constant, but also in a complicated way on 
the ratio of duration of the preceding phase 
of excitation to the period of the spectral 
peak.  

§ The  later  holds  true  also  for  the  angular  
phases.   

This means that changes in the duration of the 
excitation phase can increase or decrease the 
amplitudes of the spectral peaks , without changing 
the parameters of the filter. To illustrate this impact, 
we define a dimensionless coefficient, proportional 
to the ratio of duration of the excitation phase to the 
period of the spectral peak : 

 
ఠభ௧౮ౙ౪౪_ೌೞݎ = ߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬_௦  (19) 

  



 

For the relation of the amplitudes of the signal in 
the excitation phase and in the phase of free 
vibration we define the coefficient:  

 
౮ౙ౪౪_౦౩ݎ

భಷ ౨_౬ౘ౨౪
భಷ  

=
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ
ଵி

୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ܣ
ଵி  

(20) 

 Here ݐ୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ = ܶ − ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣݐ  means  
the duration of the free vibration phase of one 
excitation period.  The relation between these 
coefficients is: 

 
౮ౙ౪౪_౦౩ݎ

భಷ ౨_౬ౘ౨౪
భಷ  

= ฬ2sin	(
߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ

2 )ฬ 

(21) 

  
Obviously this relation is periodical, and the first 
two periods are shown in fig.2 
 

 
Figure 2: The relation of the amplitude of the generated 

signal in the excitation phase to the amplitude of the phase 
of free vibration as function of the coefficient  

ఠభ௧౮ౙ౪౪_౦౩ݎ . 

 
As  one  can  see,  varying  the  duration  of  the  
excitation phase, without changing the filter 
coefficients, the amplitude of the spectral peak of the 
generated signal in the free vibration phase can take 
any value from zero (fig.3) to two times the 
amplitude in the excitation phase (fig.4).  
 

 Figure 3: The generated signal in the excitation phase and 
in the phase of free vibration with 

ఠభ௧౮ౙ౪౪_ೌೞݎ = ݊,݊ߨ2 = 0, ±1, ±2 …. and 
excitation_phaseݎ

భಷ free_vibration
భಷ = 0 

 

 
Figure 4: The generated signal in the excitation phase and 

in the phase of free vibration with 
ఠభ௧౮ౙ౪౪_ೌೞݎ = ݊,݊ߨ = ±1, ±3 …. and 

excitation_phaseݎ
భಷ free_vibration

భಷ = 2 

 
This effect becomes more apparent within a 

signal segment, containing more than one excitation 
period. In this case not only the coefficient 
 ఠభ௧౮ౙ౪౪_ೌೞ , but also the ratio of the durationݎ
of the excitation phase to the excitation period, 
which is actually the  is mark-to-space ratio, will be 
of importance for the ratio of the amplitudes:  

 

݇௨_ =
௫௧௧_௦ݐ

ܶ
 (22) 

 
The derived analytical relations lead us to important 
conclusions. The ratio of the amplitudes of the signal 
in the excitation phase to the phase of free vibration 
for the second excitation period is given by the 
relation: 

 
౮ౙ౪౪_౦౩ݎ

భಷ ౨_౬ౘ౨౪
భಷ  

=

⎣
⎢
⎢
⎢
⎡4݇ଵ sin൬

౮ౙ౪౪_౦౩ݐ1߱ݎ

2
൰

cosቆ
౮ౙ౪౪_౦౩ݐ1߱ݎ

2݇௨

ቇ
⎦
⎥
⎥
⎥
⎤
 

ቆ݇ଵ sin ቀݎఠభ௧౮ౙ౪౪_౦౩
ቁ

+ ݇ଵ sinቆ2ߨ −
ఠభ௧౮ౙ౪౪_౦౩ݎ

݇௨

ቇቇ
ଶ

+ ቆ−2݇ଵ sinଶ ൬
ఠభ௧౮ౙ౪౪_౦౩ݎ

2
൰

+ ݇ଵ sinቆ
ఠభ௧౮ౙ౪౪_౦౩ݎ

݇௨

−
ߨ
2
ቇቇ

ଶ

൩
ିଵଶ

 

(23) 

  
The graphical representation of this relation is 
shown in fig 5.  
Obviously for the next periods the calculation of this 
ratio is getting more and more complicated and 



 

some numerical methods are needed. Nevertheless, 
the following important observation can be made:  
 

 
Figure 5: The relation of the amplitudes of the generated 

signal in the excitation phase to the phase of free vibration 
for the second excitation period. 

 
Varying the ratio of the duration of the excitation 
phase to the duration of the period of excitation, and 
without changing the parameters of the filter, one 
can generate segments, in which the amplitude of the 
spectral peak for every following period of 
excitation increases, decreases, doesn’t change 
considerably, or follows some analytical relation. 

3 IMPACT OF THE DURATION 
OF THE EXCITATION PHASE 
WITH MORE THAN ONE 
SPECTRAL PEAK  

The way, that the parameters of the excitation 
change the ratio between the amplitudes of the 
different spectral peaks in the generated signal, is 
similar to the one, presented in the previous chapter. 
We assume, that the we have all-pole filter of fourth 
order, and the poles all lie of the unit circle:  

 

(ݏ)ܪ =
1

ଶݏ) + ଵ߱
ଶ)(ݏଶ +߱ଶଶ) (24) 

 
If the excitation of the filter is one rectangular pulse, 
the output signal will contain two spectral peaks ߱ଵ  
and ߱ଶ .  If  we  assume,  that  ߱ ଶ = ݇ଶ߱ଵ  and݇ଶ > 1, 
the components of the signal in the excitation phase 
are: 

   
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣݏ
ଵி (ݐ) = ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ

ଵி  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ−

ଵி sin	(߱ଵݐ
+ ߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ

ଵி ) 

(25) 

  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣݏ
ଶி (ݐ) = ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ

ଶி  (26) 

୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ−
ଶி sin	(߱ଶݐ

+ ߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ
ଶி ) 

Where: 
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ

ଵி = ଵ
(మమିଵ)ఠభ

ర	and 

୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܱܣ
ଶி = ଵ

ିమమ(మమିଵ)ఠభ
ర are  the constant 

components of the first and second spectral peaks in 
the excitation phase  
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ
ଵி = ଵ

(మమିଵ)ఠభ
ర	and ୣܣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ

ଶி =
ଵ

మమ(మమିଵ)ఠభ
ర are  the amplitudes of the first and second 

spectral peaks in the excitation phase  
߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ
ଵி = గ

ଶ
	and ߮ୣ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ

ଶி = ଷగ
ଶ

 are  
the angular phases of the first and second spectral 
peaks in the excitation phase  
߱ଵ = ߨ2 ଵ݂  and ߱ଶ = ߨ2 ଶ݂  are the circular 
frequencies, which correspond to the spectral peaks  
ଵ݂ .and ଶ݂   

The signal components in the phase of free vibration 
are: 

   
୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ݏ
ଵி (ݐ) = ୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ܣ

ଵி  
sin	(߱ଵݐ + ߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬

ଵி ) 
(27) 

  
୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ݏ
ଶி (ݐ) = ୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ܣ

ଶி  
sin	(߱ଶݐ + ߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬

ଶி ) 
(28) 

Where: 
୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ܣ
ଵி =
ଵ

(మమିଵ)ఠభ
ర ቚsin	(

ఠభ௧౮ౙ౪౪_౦౩

ଶ
)ቚ	and 

୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬ܣ
ଶி = ଵ

మమ(మమିଵ)ఠభ
ర ቚsin	(

ఠమ௧౮ౙ౪౪_౦౩

ଶ
)ቚ 

are  the amplitudes of the first and second spectral 
peaks in the free vibration phase  
߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬
ଵி = −

ఠభ௧౮ౙ౪౪_౦౩

ଶ
	 is the angular 

phase of the first spectral peak in the free vibration 
phase 
if 4݈ߨ ≤ ߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ < (4݈ +  and ߨ(2
߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬
ଵி = గ

ଶ
−

ఠభ௧౮ౙ౪౪_౦౩

ଶ
  

if (4݈ + ߨ(2 ≤ ߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬౦౩ < (4݈ +     ߨ(4

߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬
ଶி = −

ఠమ௧౮ౙ౪౪_౦౩

ଶ
	 is the angular 

phase of the second spectral peak in the free 
vibration phase 
if 4݈ߨ ≤ ߱ଶୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ < (4݈ +  and ߨ(2
߮୰ୣୣ_୴୧ୠ୰ୟ୲୧୭୬
ଶி = గ

ଶ
−

ఠమ௧౮ౙ౪౪_౦౩

ଶ
  

if (4݈ + ߨ(4 ≤ ߱ଶୣݐ୶ୡ୧୲ୟ୲୧୭୬౦౩ < (4݈ +   ߨ(4
݈ = 	±1, ±2 … 

 ߱ଵ = ߨ2 ଵ݂ and ߱ଶ = ߨ2 ଶ݂ are the circular 
frequencies, which correspond to the spectral peaks  
ଵ݂ .and ଶ݂   



 

As  with  the  case  with  one  spectral  peak,  we  may  
expect that the dimensionless coefficients, 
proportional to the ratio of the duration of the 
excitation phase to the period of the spectral peak 
will have big influence on the parameters of the 
signal components in the phase of free vibration: 

 
ఠభ௧౮ౙ౪౪_౦౩ݎ = ߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ 	 and 
ఠమ௧౮ౙ౪౪_౦౩ݎ = ߱ଶୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ =

݇ଶ߱ଵୣݐ୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣ  

(29) 

  
This can be represented with the dimensionless 
coefficient of the ratio of the amplitudes of the two 
spectral peaks in the signal  

 

మಷభಷݎ =
ଶிܣ

 ଵிܣ
(30) 

  
In the excitation phase this coefficient will depend 
only on the filter parameters: 

 

౮ౙ౪౪_౦౩ݎ
మಷ ౮ౙ౪౪_౦౩

భಷ =
1
݇ଶଶ

 (31) 

  
In the free vibration phase, this ratio will depend of 
the filter parameters, but also in a complicated 
manner on the duration of the excitation phase: 

 
౨_౬ౘ౨౪ݎ

మಷ ౨_౬ౘ౨౪
భಷ  

=
1
݇ଶଶ
ተ
sin	(

݇ଶݎఠభ௧౮ౙ౪౪_ೌೞ

2 )

sin	(
ఠభ௧౮ౙ౪౪_ೌೞݎ

2 )
ተ 

(32) 

  
This means, that the change of the duration of the 
excitation phase can substantially change the 
predetermined from filter parameters constellation of 
spectral peaks in the signal. This influence can be 
easily seen from the next numerical example, with 
typical for a real speech signal values of the filter 
parameters (Damyanov D., Galabov V., 2012):  

§ First spectral peak ଵ݂ =  ;ݖܪ	420
§ Second spectral peak ଶ݂ =  which ;ݖܪ	966

means ݇ଶ = మ
భ

= 2.3; 
§ Nominal duration of the excitation phase 

௫௧௧_௦ݐ =  ;ݏ݉	2.8
§ Fluctuation of the nominal duration of the 

excitation phase ∆ݐ௫௧௧_௦ =
 ;ݏ݉	±0.4

In the excitation phase the ratio of the amplitudes 
depends only on the filter parameters: 

 

 
 

౮ౙ౪౪_౦౩ݎ
మಷ ౮ౙ౪౪_౦౩

భಷ  

=
୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ
ଶி

୶ୡ୧୲ୟ୲୧୭୬_୮୦ୟୱୣୣܣ
ଵி = ݇ଶିଶ ≈ 0.189 

(33) 

  
In the phase of free vibration with nominal duration 
of the ݐ௫௧௧_௦ =  this coefficient ;ݏ݉	2.8
will be  ݎ౮ౙ౪౪_౦౩

మಷ ౮ౙ౪౪_౦౩
భಷ ≈ 0.288. If 

the duration of the excitation phase is shortened with 
4  ms,  the  coefficient  will  increase  more  than  20  
times to ݎ౨_౬ౘ౨౪

మಷ ౨_౬ౘ౨౪
భಷ ≈ 6.33, and if the 

duration of the excitation phase is lengthened with 
4ms, the coefficient will decrease more than 20 
times to ݎ౨_౬ౘ౨౪

మಷ ౨_౬ౘ౨౪
భಷ ≈ 0.061. On 

fig.6 for the three cases the excitation rectangular 
pulse with duration, equal to the duration of the 
excitation phase, the generated signal and its spectra 
are shown.  
 

 
Figure 6: The three cases the excitation rectangular pulse 

with duration, equal to the duration of the excitation 
phase, the generated signal and its spectra. 

4 CONCLUSIONS 

When dealing with periodical and quasiperiodical 
processes, the “source-filter” model allows 
simplification of analysis and parameterization and 
makes the technical implementation easier. This 
facilitations can be achieved when filter and 
excitation source are treated independent. In this 
case for the parameterization of the filter very 
efficient techniques and methods can be used. This 
approach gives excellent results in most cases of use 
of the model – in systems for analysis, synthesis, 
coding and transmission of speech signals and 
others. In some cases this description is not relevant 
enough and additional complicated methods and 
information sources must be used. This paper shows 
that the model can be made more effective without 
further complications, using the cumulative effect of 



 

simultaneous treatment of the processes, which 
happen on the source and the filter.  
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