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Iapaneauszauusa Ha aaropursmMa SINCO

Teopopa Xpucresa

Peswome: [lpobnembm cbC cenekmupaHama obpamHa Koeapuauusi ce cpewa 8 MHO20
npakmuyecku npunoxerusi. SINCO(Sparse INverse Covariance) e aneopumnbM 3a pewasaHe makug eud
3adayu. OcHosHOMO MPeduMCmBo Ha mo3u as2opumbM € fpocmomama Ha He2o80mo rnpusiazaHe u
rnomeHyuana My 3a napanenuaupaHe. Afr20pumbMbm € pasfnaparnesieH ¢ U3rnon3eaHe Ha mexHosoausima
OpenMP, HanpaseHu ca uamepesaHusi Ha 6bp3odelicmuemo U aHanu3 Ha pesynmamume.
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Parallelization of the SINCO algorithm

Teodora Hristeva

Abstract. Sparse inverse covariance selection problem is encountered in many practical
applications. SINCO is an algorithm for the Sparse INverse COvariance problem. The main advantage of
this algorithm is the simplicity of its implementation and his parallelizing potential. The algorithm is
parallelized using OpenMP, the speedup is measured and the results are analyzed.
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1. INTRODUCTION

Sparse inverse covariance selection problem is
encountered in many practical applications. SINCO is
an algorithm for the Sparse INverse COvariance
problem. It is also an algorithm that allows
parallelization.

2. SINCO ALGORITHM

In each step, the algorithm consists of two phases:
search phase and update phase. In the search phase,
the method computes potential updates for all
coordinates Xij and selects the best coordinate
producing the most increase in the objective function.
In the update phase, using the Xij information the
method updates the coordinate in the inverse
covariance matrix which is a rank two update X*ij

Next step is to update the maintained estimate of
[W=X]J*(-1) using Sherman-Morrison formula for the
rank-two update. This step is necessary as values of W
are extensively used in the search phase of the
algorithm. Each sub problem of the search phase will
be a one-dimensional problem as
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The algorithm is a variant of a greedy coordinate
descent algorithm for a convex problem and so it
enjoys known convergence guarantees and a sub
linear convergence rate. We can see that, since the
updates are computed for each coordinate separately,
it lends itself to distributed parallel setting. The data can
be distributed among processors, assuming different
distributions and methods for updating the inverse
update step.

Our implementation of the parallelization is done
with OpenMP and corresponds to the division of
workload between different threads using the sections
or parallel for directives. The first phase of the algorithm
involves a simple search done on all coordinates, so
we can just make the for loop parallel. In order to divide
the compute load in the coordinate search phase, we
need only to use #pragma parallel for for the search
loop, however each thread although threads are now
searching in the shared memory space, in order to save
the results (maximum coordinates of each thread) we
need to privatize the variables corresponding to



IN-SILICO INTELLECT, Vol. 2, No 1/2020

coordinates and function value of sections
corresponding to thread's territory.
Outlne of SINCO algorithm
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Fig. 1 SINCO algorithm, described sequentially.

#pragma omp parallel for private(jj ,uplndex)

#pragma omp critical

{

if (fnew > funmax ) {
funmax=fnew ;
imax=i :
jmax=j ;
alphamax=AllSteps (i, ).alpha;
updatemax=AllSteps(i,] ).

update;}

Fig.2 Example of using pragmas in parallelism.

The important aspect that needs a specialized
treatment is the update of the global best coordinate
variables which will maintain the best coordinate
information through all threads. To prevent race
conditions we need the lines corresponding to this
section in a critical statement so that no two threads
execute these instructions simultaneously.

For the second phase which is updating the matrix
with two rank one updates, as all the information is
shared, there is no communication involved, however a
barrier is needed before the second phase to ensure
that all threads have synchronized information about
the coordinates staged for updating and also the
magnitudes of the updates. The update loop needs to
be modified so that threads divide the load on updating

the matrix coordinates of the inverse matrix to account
for parallel environment.

3. RESULTS

From Fig. 3 can be seen that as the number of
threads increases, the execution time increases. This
happens when we have dependencies between
iterations and it is necessary to use a critical section or
barrier - this causes a consistent execution of the
specified region. This option parallelizes the cycles
automatically.

Threads PA
2 197.88
4 371.1¢9

8 1064.72

Fig.3 Starting the algorithm with a different number of
threads.

There is another type of distribution of iterations
shown in Fig. 4. In the block-cyclic distribution the 4
processors calculate the values of different elements of
the matrix. This eliminates waiting in a critical section
to retrieve a value from an adjacent item. As we can
see with a parallel optimization algorithm, the execution
time is less than the time of the parallel algorithm.
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Fig. 4 Block-cyclic distribution

There is another type of distribution of iterations
shown in Fig. 4. In the block-cyclic distribution the 4
processors calculate the values of different elements of
the matrix. This eliminates waiting in a critical section
to retrieve a value from an adjacent item. As we can
see with a parallel optimization algorithm, the execution
time is less than the time of the parallel algorithm.

4. CONCLUSION
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The main advantage of this algorithm is the
simplicity of its implementation and his parallelizing
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potential. This makes it suitable for solving a variety of
tasks where optimization of calculations is required.
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