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Abstract: This paper represents a theory of admittance 
loaded slow-wave open loop resonators. The main resonator is 
extended to periodically loaded line. A closed form formulas for 
the fundamental and the first spurious resonance frequency are 
derived. Based on the Floquet�s theorem, a dispersion equation 
of the slow-wave resonator is derived. The resonance 
characteristics are studied for different impedances of the 
loading stubs. Dispersion characteristics, defining the filtering 
function of the periodically loaded line, are also studied for 
different impedances and electrical length of the loading stubs. 
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I. INTRODUCTION 

Radio frequency and microwave planar bandpass filters are 
presently required in wide variety of applications of wireless 
communication systems, WLAN, software radio etc.  
The compact sizes of the filters, combined with wider upper 
stopband are crucial factors for some wireless applications. 
However most of the microstrip bandpass filters are large in 
size and their first spurious frequencies appear at 02 f  or 03 f , 
where 0f is the filter central frequency. Many authors propose 
using stepped impedance resonators [1,2] to shift the first 
spurious resonance frequency not on a multiple of the 
fundamental resonance. In [3] is presented a theory and 
experiment of slow-wave open loop resonators (Fig.1a) and 
their extension for capacitively loaded transmission line. This 
theory is a special case of a periodically admittance loaded 
transmission line. In [4] is proposed a slow-wave resonator 
loaded with different loading capacities (Fig.1b). [4] claims 
for higher unloaded quality factor than the slow-wave 
resonator presented in [3].  
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Fig.1 Topologies of slow-wave open loop resonators 
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This paper presents a general theory of slow-wave open 
loop resonator. Based on the circuit theory, closed form 
formulas for the fundamental resonance frequency and the 
first spurious resonance frequency are derived. Using the 
electrical parameters of the transmission lines, a general 
dispersion equation is derived.  

The dispersion effect conducts the filtering function of the 
slow-wave resonator. It is studied four cases for slow-wave 
resonators. The obtained results are graphically shown and are 
applicable for practical design.  

II. RESONANCE CHARACTERISTICS OF SLOW-WAVE 
OPEN LOOP RESONATOR 

The slow-wave open-loop resonator consists of a 
transmission line loaded on both sides with admittances 1Y  

and 2Y . The main parameters of the transmission line are the 

characteristic impedance cZ , length of the line l , and the 

propagation constant k . The resonator is shown on Fig.2. 
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Fig.2 Admittance loaded slow-wave resonator 

The electric length of the unloaded line becomes l , 
where jk . The electrical characteristics of the resonator 
may be described by the ABCD matrix. The overall matrix of 
the resonator is a product of the three ABCD matrices - 
admittances 1Y , 2Y  and the unloaded transmission line. 
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After the multiplication, the elements of the ABCD matrix 
are derived as: 

2cosh sinhcA Y Z            (2a) 
sinhcB Z             (2b) 
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1 sinh coshcD Z Y           (2d) 
It is easily checked out the main property of the ABCD 

matrix: 1AD BC . 
If a standing wave is excited in the slow-wave resonator 

and taking into account the boundary conditions 1 0I  and 

2 0I , consequently for non-zero voltages 1V  and 2V  it is 
required that: 
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It is clear that for the fundamental resonance: 
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 Solving the Eqs (3) and (4) it is derived the following 
quadratic equation: 
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The solutions for the electrical length of unloaded 
transmission line are derived from the Eq.(5). 

2 2 2
1 20

1 2

1 1
tan

2
c cZ Z Y Yl

h
Y Y

          (6). 

For the first spurious resonance we have: 
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Then solving the system of Eqs. (3) and (7) leads to the 
following quadratic equation: 
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The solutions for the electrical length of the unloaded 
transmission line of the slow-wave resonator ( 1 2Y Y ) are: 
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In the most practical cases the loading admittances 1Y  and 

2Y are equal ( 1 2Y Y Y ) [1,3]. Then the transmission line 
electrical length for the fundamental resonance is derived 
from Eq.(6) as: 

0 1tan
2 c
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            (10) 

For the spurious resonance the equation is: 
1tan
2 c
lh Z Y            (11) 

For microstrip slow wave resonators often the loading 
admittances are open circuited stubs. In the case of open stub 
the input admittance is tanin opst opstY Y h . Assuming a 
lossless lines ( 0 ) the propagation constant is a pure 

imaginary value. Then the fundamental resonance condition 
becomes: 

0 2 tan opst c opstarc Y Z tg           (12) 
The electrical length of the unloaded transmission line for 

the first spurious resonance is found as: 

1 2 2 tan opst c opstarc Y Z tg           (13) 
It is clearly seen that for unloaded resonator, the resonator 

electrical length for the fundamental resonance is 0 , and 
for the first spurious resonance- 1 2 .  

It is shown on Fig.3 the dependence of the overall electrical 
length for the fundamental resonance of the slow-wave 
resonator ( 0 02t opst ) as a function of the open stub 
length ( opst ) for a constant impedance ratio c opstK Z Y . 

 
Fig.3 Electrical length of the resonator for the fundamental 

frequency 

If the impedance ratio 1K  the resonator is shorter than 
the halfwave unloaded resonator. This fact is applicable for 
small sized resonators used in mobile communication 
systems. But for 1K , the resonator is longer than a 
halfwave resonator. It is also seen that for big or small values 
of the impedance ratio K , it is well pronounced a maximum 
of the resonator length t . 

Fig.3 shows the dependence of the slow-wave resonator 
electrical length for the first spurious resonance as a function 
of as a function of the open stub length opst for a constant 
impedance ratio K . 

 
Fig.4 Electrical length of the resonator for the first spurious 

frequency 
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It is clearly seen form Fig.4 that for unloaded halflength 
resonator, the overall electrical length is 2 rad for the first 
spurious resonance.  For impedance ratio 1K , the resonator 
electrical length is larger than halfwave resonator. It is 
obvious that for larger impedance ratio the resonator length 
for the first spurious resonance is shorter.  

Fig.4 shows the dependence of the ratio of the resonator 
overall lengths 1 0t t as a function of the electrical length of 
the open stub for various impedance ratios K . For 1K  
(halfwave resonator) it is seen that 1 0 2t t  i.e. the first 
spurious frequency is twice the fundamental resonance 
frequency.  

 
Fig.5. Ratio of the resonator lengths 1 0t t as a function of 

the electrical length of the open stub. 

To control the first spurious frequency, it is necessary to 
choose a proper impedance ratio. In the most common cases 
the first spurious resonance is not a multiple of the 
fundamental resonance and it is greater than twice the 
fundamental. From Fig.5 it is clear that in these cases the 
impedance ratio should be less than 1. Then the length of the 
resonator is less than the halfwave resonator. 

III. DISPERSION EQUATION 

 We may consider the slow-wave resonator from Fig.1 for a 
unit cell of as periodically loaded transmission line. This 
assumption allows explaining the physical mechanism of the 
filtering characteristics of the periodically loaded transmission 
line. Let�s  is the propagation constant in the periodic 
admittance loaded transmission line. Then applying the 
Floquet�s theorem [5] i.e.: 
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to the [ABCD] matrix of an unit cell results in: 
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The non-zero solution for the output voltage 2V  and current 

2I  exists only if the determinant is zero. This leads to the 
following equation: 

0j d j dA e D e BC           (16) 

Substituting Eq.(2a-2d) in (16) and taking into account the 
[ABCD] matrix property 1AD BC  we derive the 
dispersion equation of the slow wave open loop resonator. 

1 2cosh cosh sinh
2c

Y Y
d Z    

(17) 
If the transmission line is loaded with equal open stubs 

1 2Y Y Y , the dispersion equation (17) becomes: 

cosh cosh sinhcd Z Y          (18) 
For the fundamental frequency substituting (12) in (18) it is 

derived 0cosh 1d . For the first spurious frequency it is 

seen that 1cosh 1d . Here the propagation constants are 

0 0 0pv  and 1 0 1pv , where 0pv  and 1pv are the 
phase velocities for the fundamental and the first spurious 
resonance. If there is no dispersion, the phase velocity is a 
constant. This is true for unloaded transmission line. The 
phase velocity is frequency dependant for periodically 
admittance loaded transmission line. This fact determines the 
filtering function of the periodically loaded transmission lines.  

There are studied two main types of slow wave resonators - 
with impedance ratios 1K  and 1K .   

The first case is for slow wave open loop resonator with 
6opst rad, 1 20opst opstZ Y  and 1 40opst opstZ Y . 

The characteristic impedance of the main transmission line 
is 50cZ . The dispersion curves are shown on Fig.6. 

passband 

stopband 

d/  

kl/  

Fig.6 Dispersion curves for 6opst rad, 20opstZ  (circles) 

and 40opstZ (diamonds), halfwave resonator-solid line 

It is seen from Fig.5 that increasing the characteristic 
impedance of the loading stub leads to decreasing of the 
dispersion effect. For 40opstZ , the passband is wider than 
the case with 20opstZ . For unloaded transmission line 
resonator (halfwave resonator case) it is seen that the first 
spurious passband is placed on twice the fundamental 
resonance frequency.  

The next studied resonator is with loading stubs with 
electrical length 12opst rad and characteristic 
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impedances 20opstZ and 40opstZ . The results are 
shown on Fig.7. 

 

passband 
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 Fig.7 Dispersion curves for 12opst rad, 20opstZ  (circles) 

and 40opstZ (diamonds), halfwave resonator-solid line 

Comparing both Fig.6 and Fig.7, it is clearly seen that 
longer loading stubs lead to well pronounced dispersion 
effect. This effect results in better filtering functions and a 
possibility to control the passband and the stopband. 
Moreover choosing proper characteristic impedance of the 
loading stubs and their electrical length, it may control the 
first spurious passband.  

The dispersion curves for 1K  and 6opst rad are 
shown on Fig.8.  
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Fig.8 Dispersion curves for 6opst rad, 55opstZ  (circles) 

and 75opstZ (diamonds), halfwave resonator-solid line 

It can be found from Fig.8 that the dispersion effect is less 
pronounced than the case for 1K  (Fig.6 and Fig.7). 
However the slope of the dispersion curve for the fundamental 
resonance is steeper than the slope for the first spurious 
resonance. This fact forms narrower spurious passband than 
the fundamental passband. If the characteristic impedance is 
bigger ( 75opstZ ), the dispersion effect is closer to the 
halfwave unloaded resonator. 

The last studied case is for slowwave resonator loaded with 
open stubs, having characteristic impedance greater than the 
main transmission line and electrical length 12opst rad.  

passband 

stopband 
kl/  

d/  
 Fig.9 Dispersion curves for 12opst rad, 55opstZ  (circles) 

and 75opstZ (diamonds), halfwave resonator-solid line 

It is clearly seen from Fig.9 that the dispersion effect is less 
pronounced for short high impedance open stubs. The 
passband is almost equal to the passband of halfwave 
resonator.  

V. CONCLUSION 

This paper presents a general theory of slow-wave open 
loop resonator. Based on the circuit theory, closed form 
formulas for the fundamental resonance frequency and the 
first spurious resonance frequency are derived. Using the 
electrical parameters of the transmission lines, a general 
dispersion equation is derived. The theoretical view of the 
admittance loaded transmission line resonator gives insight for 
the main properties of this type of resonator. The filters 
designed with slow-wave resonators will have wider stopband 
characteristics, due to the dispersion effect.  
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