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ABSTRACT 

Interference Wedged Structure (IWS) is an optical element with useful properties for optical metrology, spectral analysis 
and optical communications. We have introduced in the paper a new perspective element of this type – Composite 
Tunable Interference Wedged Structure (CTIWS). The CTIWS is list-like sequence of superimposed wedged layers each 
with reflecting surfaces. For conveniently chosen apex angles and thicknesses of the layers, the CTIWS can assure high 
spectral selectivity to 0.01nm within a spectral range of 10 nm and more at smooth tunability by simple sliding of the 
structure along the wedge arm (a few cm). We have developed simple physical description of the IWS and CTIWS by 
adapting Fabry-Perot theory. We show that for the most important practical cases the results are similar to the obtained 
by more complex exact analytical description. The theoretical predictions are confirmed by experimental results. On the 
base of IWS and CTIWS combined in a suitable architecture, we have introduced and studied a new lossless Wavelength 
Division Multiplexing (WDM) element with independent tuning of each output/input. We considered the WDM 
implementation for the case of fiber optical systems used in optical communications. 

Keywords: interference, Fizeau wedge, composite tunable wedged interference structure, wavelength division 
multiplexing 
 

1. INTRODUCTION 
The Interference Wedged Structure (IWS)1-5 is an optical element which is most frequently based on multiple beams 
interference. Until recently, the IWS slacked somehow popularity and found limited application as spectral analyzing 
elements. In our previous works, we have shown potential of these structures in laser technology as elements for laser 
spectral control. We found new properties of these structures that can be a basis for new applications as e.g. spectrally 
selective reflection in direction different from that given by Snell’s law and asymmetry in transmission3-6. Recently, we 
have introduced and patented new structure of this type – a Composite Tunable Interference Wedged Structure 
(CTIWS) - in combination with its usage as an attractive Wavelength Division Multiplexing (WDM) element9. The 
IWSimplemented as composition of interferential wedges (IWs) makes possible achieving high selectivity (narrow 
resonances) in combination with large interval of spectral and spatial tuning1. The IW as a single gap wedged structure 
has several well-known drawbacks1. The light beam passing through an IW illuminated by spatially extended light beam 
consists of parallel lines - the so called Fizeau lines1, which correspond to the spatial resonances. Existence of Fizeau 
lines limits the tuning of a small diameter light beam at sliding the IW within the distance separating Fizeau lines. 
Occurrence of  Fizeau lines decreases strongly the free spatial range of the interferential structure to be only the distance 
between two lines. Also, the free spectral range is limited by repetitive appearance of spectral resonances, corresponding 
to a given thickness. The free spectral range decreases with the IW’s thickness whereas the spectral resolution is 
improving at larger thickness. To increase the distance between the spatial and spectral resonances, a wedge with a very 
small apex angle and small thickness must be used1. However, in this case, both the spatial lines and the spectral widths 
of the resonances enlarge, and this is a strongly limiting factor for various applications. To obtain a narrow  resonance at  
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a large free range and a small spectral width, in our previous work 6 we introduced  a system built from a pair of 
separate IWs – a thin and thick wedges – with no related parameters. The synchronized tuning of a coinciding spatial 
resonance for both wedges was made independently by synchronized mechanical sliding of each of the wedges, and this 
substantially complicated the device. Description of combined usage of two IWs for improvement of the spectral 
resolution exists in the literature, but without solution of the issue with the synchronized tuning7. Therefore, the first 
task of this paper is to propose solution of this issue based on a CTIWS (Figure 1). By using a simple model, we show 
that a two-angle CTIWS consisting of  two separate wedged  layers with suitably chosen parameters as gap thicknesses, 
apex angles and refractive indices can produce a single spatially and spectrally narrow resonance due to the thick 
wedged layer at large free distance ensured by the thin wedged layer. A single resonance at other wavelength can be 
achieved within this distance through sliding the CTIWS that causes wavelength tuning of the transmission.  

The WDM elements are of great importance for optical communications and laser technology. As a second task in the 
paper, we propose implementation of a competitive WDM element on the base of our patent 9 through sequential 
arrangement of CTIWSs (also IWs) in a proper architecture. More specifically, we describe in the paper properties of an 
IWS and a CTIWS that permit to connect the WDM element to an optical fiber system. As it is well known, the WDM 
elements are very important for the hardware of optical communications 10. In the literature 8 there are presented few 
solutions based on prisms and diffraction gratings (generally with low dispersion – selectivity and relatively high  
losses), Fabry-Perot type filters with limited tunability of the outputs/inputs; important for real applications is the 
elements based on a Bragg grating, however, with complexity of tuning the outputs /inputs. All these elements have 
advantages and drawbacks, and this justifies research in this area. The proposed by us new WDM element demonstrates 
high selectivity (0.01 nm and less) with continuous tuning in a large spectral range (10 nm and higher), controlled 
separation of the needed power for each output and without useless losses; precise tuning of each output/input without 
cross-talk with the other output/inputs; simplicity in construction and very simple mechanical tuning (manually or 
electrically). This WDM element may find special applications for high power light beams with power densities (MW-
GW)/cm2 (no communications systems).  

This work gives generalized presentation of a CTIWS, an IWS (with emphasis on an IW) and a WDM element by 
modeling, analysis and experimental verification and points out specific features of these structures. Firstly, we consider 
the CTIWS in comparison with the IW as a building component of optical devices. We propose as implified model for 
analysis and give experimental data proving useful properties of these elements from the point of view of their 
utilization in fiber systems. Secondly, as a consequence of the first task, we present a new WDM element as a principle, 
experimental implementation and potential for application in fiber systems (optical communications).  

2. CTIWS – MODEL, ANALYSIS AND PROPERTIES 
The proposed by us CTIWS is built from layered mirrors, separated by transparent wedged layers (gaps) with 
appropriate parameters – apex angles, refractive indices and thicknesses. Note that the IWS by definition possesses ideal 
plane boundary surfaces for each wedged layer (gap) and plane reflecting layers (mirrors). The CTIWS is a list-like 
element with typical dimensions 1 cm × 4 cm × 0.2 cm that can select a single narrow resonance. It transmits a spectral 
line of 0.01 nm or less at 30-70 %  transmission that is tunable along the length of the structure. Tuning is performed by 
sliding the structure in its plane within a spectral interval of 10 – 100 nm. Generally, the CTIWS can act as a spatial 
wavelength analyzer with high spectral resolution when it is illuminated by a large diameter multi-wavelength beam. 
However, the main interest is applying the structure in the hardware of the optical communications and in laser 
technology and this requires high spectral and spatial resolution with tuning in a large free range of a small diameter 
light beam. 

Schematic representation of a three-angle implementation of a CTIWS is shown in Figure 1. The structure contains 
three gaps. The simplest realization of an IWS (known as an IW or Fizeau Wedge1) is the case with a single separating 
wedged layer. The main properties of the IW are described in the literature, including also our previous publications3-6,8. 
To present adequately the CTIWS and WDM, we give brief description of some specific properties of the IW related to 
application in optical communications.  
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The geometrical thicknesses of IW1,2 that vary linearly with the distance from the apex angle (along X axis) and 
respectively with distance p from the line of the chosen initial geometrical resonant  thicknesses e10 and e20 are given by 
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For wavelengths λ1 and λ2, corresponding to the thicknesses given by (3) and (4), after some analytical transformations, 
we obtain: 
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where k and q are integers. From the expressions (5) and (6), taking into account that 10102 λ=ke and 20202 λ=qe
2e20/q = λ20 we can obtain variation of λ1 and λ2 with p as :  
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From Eq.(7), the condition for equally selected wavelengths (λ1 =λ2 = λc) for the given p and respectively for 
wavelength tuning by sliding  the CTIWS’s is: 
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and in view of Eq.(1) we obtain the general formula for selection of a single resonance and continuous tuning by sliding 
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Expressed through the optical thicknesses, the condition for equal tuning of λ can be written as:  
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and the expression for the commonly tuned λ as  
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As a numerical example let’s consider a two-angle CTIWS similar to those used in practice. It is built as combination of 
a pair of reflecting layers-intermediate gaps (as given in Figure 2). The parameters of the first IWS1 area follow: 
e1 = 20 μm, α1= 5×10-5 rad, and for the second IWS2 they are e2=5μm, α2=1.2×10-5 rad; the refractive indices are 
n1=n2=1.5 with reflectivity of the mirrors Ri =85% and the beam incidence angle θi ~ 0 at wavelength 0.6328 μm (He-
Ne laser). This parameters are chosen to be approximately equal to the parameters of two specially selected our 
structures. These two structures are superimposed  by pressing the rear dielectric layer (mirror) of the first structure to 
the front layer of the second. This permits us to study properties of the two structures separately and in the CTIWS. We 
have observed that precise superposition of the two dielectric layers (mirrors) results in their acting as one mirror with 
nearly the same reflectivity as reflectivity of a single mirror. The parameters of the two single-angle structures that 
compose the two-angle structure satisfy Eqs. (8) and (9).The results of computation using Eqs. (9) and (10) are 
presented below in Figure 2 (left) and the photographs of the observed transmission are shown in the middle. 
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The properties of the IWS, arrangement as a list-like element and tuning by sliding permit development 6 of original 
solution of a WDM element-structure. The principle of its realization is shown in Figure 4. It consists of series of 
parallel CTIWSs which reflect the input beam from one to another. The tuning of each input-output, performed by 
sliding the plane structure, does not disturb selection of the other input/outputs. The output power at the selected 
wavelength is extracted from the incident beam by simple deviation of the incident point from the exact position of the 
resonance. The element works theoretically without energy loss. 

Important possibility offers the observed by us feature of the IWS, including the CTIWS, to work well under 
illumination with a light beam focused by a short focal length lens (f ~ 2-5 mm). The focal spot is ~0.2 mm and for 
structures with thicknesses of 5µm – 30µm, angles ~2-10 μrad, R~85-90%, transmission at the resonant point reaches 
more than 80%.   

 
Figure 5. Transmission of the beam focused with a short focal length lens (2 mm) through an IWS. Left – schematic 
presentation, right – real photograph. The spots of transmitted (on tracing paper TB) and reflected light (on tracing paper 
TP) are shown.  

 
Another interesting feature is observed when the discussed wedged structures IWS and CTIWS are illuminated by a 
fiber (aperture ~ 100μm) closely placed to their surface normally or at small angle up to 15o. The structures shows good 
performance with resonances for the illuminating fiber output light beam that correspond well to the distance for 
illumination with a narrow collimated beam. The experiment was done with a He-Ne laser. The experimental set-up is 
shown in Figure 5, where illumination with symmetric near Gaussian beam by closely disposed 100 μm fiber with red 
He-Ne laser light can be seen. The divergence is estimated to be ~ 1.2o. The parameters of the single-angle IWS are 
e=5 μm,θ=00,α=1.2×10-5rad, n=1.5, R=0.8 and λ=0.6328 μm. It can be seen from the graph in Figure 6 that transmission 
of the structure is high approaching maximal for the mentioned divergence of the beam. 

`  
 

Figure 6. Transmission of the light, emitted by ~100 µm fiber by the IW-structure. Left – output beam from the fiber. 
Middle – transmitted through IWS light is visualized by plotted tracing paper on the back side of the IWS.Right –calculated 
transmission of the IWS for beam with near homogeneous intensity distribution (IWS with e ~5 μm,  He-Ne laser). 

 

These two observations offer possibility to create a promising WDM element in fiber-short focal lenses arrangement. 
The schematic of the basic component of the solution that is multiplied in the new WDM-element coupled to a fiber-
lenses system is given in Figure 7(a). Its practical realization as a laboratory model can be seen from the photograph in 
Figure 7(b). As it is shown in the figure, the end of the fiber with multi-wavelength light output is disposed closely at 5-
10 mm from the first IWS1 (similar to the one, described in Figure 6) and at small angle ~ 5o with respect to the normal 
in the point of  illumination. Part of incident light at the wavelength, given by the transmission resonance in the incident 
point, passes, the other part and the light at the other wavelengths in the complex beam are reflected toward the next 
structures. From the reflected beam, focused by the lens L on the second  IWS2 light is selected at the wavelength given 
by the resonance on which is adjusted  the second IWS. The connection between IWS1 and IWS2 can be realized by the 
intermediate fiber (for long distance) in which, by the lens L, is introduced the focalized reflected light from IWS1 and 
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with repetition of the discussed  already action of the arrangement. The IWS1 and IWS2 can be implemented as one-
angle wedged structures (type IW) as well as CTIWS with two or three angles. The principle and the action are the same 
for all mentioned cases. The advantage when the CTIWS is used is that the selectivity and the tuning range increase 
essentially. With a simple IW one can select light of spectral width of the order of a few nanometers going down to part 
of a nanometer (5-1-0.5 nm) tunable in the range of few nm. Use of a CTIWS permits to obtain a linewidth less than 
0.05 -0.01 nanometers combined with tuning within ~ 10 and more nanometers. 

 
(a)                                              (b) 

Figure 7. (a) The schematic of the basic component of the solution that is multiplied in the new WDM-element, coupled in 
fiber-lenses system. (b) Practical realization as laboratory model - photograph. 

 

The photographs in Figure 8(a) illustrate the independent tuning of the outputs of the presented in Figure 7(a) 
experimental WDM implementation based on the fiber-lens – IWS. The tuning is achieved by sliding the IWS1.  The 
first output changes the wavelength, and as it can be seen, the second is not influenced. The generalized schematic of the 
fiber-lenses WDM element as composed from components schematically presented in Figure 7 is given in Figure 8.  

 

(a)                           (b)                                                                                      (c) 

Figure 8. (a,b) Photographs of demonstration of the action of laboratory arrangement - model of the fiber-lenses-IWS WDM 
system with two IWSs. By sliding the first IWS, the output is tuned, the other output remains at the same wavelength. (c) 
Generalized schematic of the WDM element composed from fiber-lenses-IWSs as multiplication of the component in 
Figure 7. 

 

4. CONCLUSION 
In summary, we have studied the unique properties of the proposed by us Composite Tunable Interference Structures 
(CTIWS). In parallel, we have considered some new aspects of the Interference Wedged Structure (IWS) and the CTIWS 
behavior in interaction with fiber transmitted light which is great interest for optical communications. We have shown 
the possibility to develop WDM-type system on the base of IWS and CTIWS that has useful competitive properties – 
high selectivity in large spectral range, independent spectral selection (i.e. channel’s tuning) of each output-input, 
without disturbing the other channels, potential for low useless energetically losses in the WDM devices. We have 
proposed a simplified approach for analysis of the discussed wedged structures on the base of Fabry-Perot theory and 
have shown it applicability for evaluation the parameters of the IWS and CTIWS. The analysis shows that CTIWS can 
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assure selection of single narrow resonance, i.e. selection of a spectral line (~0.01 nm or less), tunable along the length of 
the structure by simple translation in its plane (i.e. sliding; spectral interval of 10 – 50 nm).The structure represents a list-
like tunable filter (dimensions ~ 1 cm × 4 cm × 0.2 cm). The essential progress achieved in the present work concerning 
the potential the CTIWS and IWS is related to the progress of technology of very high quality dielectric layers – building 
components for discussed structure (nano-flatness, very low loses material for producing the layers). 
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