THE PLE CONFERENCE 2013
Learning and Diversity in the Cities of the Future

Ilona Buchem, Graham Attwell, Gemma Tur (Eds.)

4th International Conference
on Personal Learning Environments

Beuth University of Applied Sciences
Berlin, Germany

Monash University
Melbourne, Australia

July 2013, Proceedings

Research Report 2013
Beuth University of Applied Sciences

Forschungsbericht 2013
Beuth Hochschule für Technik Berlin
E-PRINT/POSTPRINT
Impressum

Editors:

Prof. Dr. Ilona Buchem
Beuth University of Applied Science Berlin
Department I Economics and Social Sciences
E-Mail: buchem@beuth-hochschule.de

Graham Attwell
Educational Researcher
Pontydysgu – Bridge to Learning
Associate Fellow at the Institute for Employment Research
University of Warwick
E-Mail: grahamattwell@googlemail.com

Dr. Gemma Tur
University of the Balearic Islands
Department of Applied Pedagogy and Educational Psychology
E-mail: gemma.tur@uib.es

Forschungsbericht 2013
Beuth Hochschule für Technik Berlin

CC BY-SA: This postprint of the proceedings of the PLE Conference 2013 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

EDITORS:

Prof. Dr. Ilona Buchem
Beuth University of Applied Science Berlin
Department I Economics and Social Sciences
E-Mail: buchem@beuth-hochschule.de

Graham Attwell
Educational Researcher
Pontydysgu – Bridge to Learning
E-Mail: grahamattwell@googlemail.com

Dr. Gemma Tur
University of the Balearic Islands
Department of Applied Pedagogy and Educational Psychology
E-Mail: gemma.tur@uib.es
Preface

The Conference on Personal Learning Environments is now an established annual international, scientific event and a reference point for the current state of the art in research and development in Personal Learning Environments (PLE). The PLE Conference creates a space for researchers and practitioners to share concepts, case studies and research related to the design, development and implementation of Personal Learning Environments in diverse educational contexts including formal and informal education. The PLE Conference takes place annually, each time in a different country and city. The first event was held in Barcelona, Spain in 2010, the second in Southampton, UK in 2011, and the third in Aveiro, Portugal in 2012 together with a parallel event in Melbourne, Australia.

Building on the previous conferences, the 4th PLE Conference took place at Beuth University of Applied Sciences in Berlin, Germany together with a parallel event at Monash University in Melbourne, Australia. As Chair and Organising Committee members of the PLE Conference 2013 we are very pleased to present a wide range of contributions that we received and welcomed in Berlin and Melbourne. The contributions included in these proceedings encompass empirical research studies, literature reviews, theoretical treaties and descriptions of workshops and alternative sessions held at both venues in July 2013.

Personal Learning Environments (PLE) is an approach in Technology-Enhanced Learning (TEL) based on the principles of learner autonomy, ownership and empowerment. PLEs are integrated, individual environments for learning which include specific technologies, methods, tools, contents, communities and services constituting complex learning infrastructures, enhancing new educational practices and at the same time emerging from these new practices. This represents a shift away from the traditional model of technology-enhanced learning based on knowledge transfer towards a model based on knowledge construction and sharing. In PLEs learning happens by drawing connections from a growing and diverse pool of online and offline resources to plan, organise, create, network, engage and reflect in permeable spaces. Although much research is presently focused on MOOCs, the very emergence of MOOC and the increasing uptake on online resources for learning in different contexts is opening the debate on pedagogic approaches to the use of different technologies for learning, including PLEs.

The 4th PLE Conference focused on the theme of “Learning and Diversity in the Cities of the Future”, among others addressing the issue of smart cities, one of the key research priorities worldwide and the strategic direction of Beuth University of Applied Sciences Berlin. The conference addressed the following questions:
How can Personal Learning Environments support diversity, cross-boundary learning and interdisciplinary transformation of urban spaces?

How to design and implement Personal Learning Environments as part of interconnected social and technological infrastructures of smart cities?

What PLE scenarios can be envisaged to enhance learning and diversity in cities of the future?

The conference programme tackled the main theme and the three questions within three days, including the pre-conference and the two main conference days, which encompassed a number of engaging formats such as un-keynote speakers, research sessions, interactive sessions, workshops, pecha kucha sessions, demonstrations and posters. In fact, the mix of conference and un-conference formats of the PLE Conference is one of its unique features — our aim has always been to involve conference participants in conversation and interaction, hence our participants can be called “The People Formerly Known as the Audience”, following Jay Rosen’s phrase.

The papers included in the Proceedings provide rich and valuable theoretical and empirical insights into Personal Learning Environments. The PLE Conference 2013 received 75 submissions and welcomed almost 100 delegates from Europe, Asia, Australasia, North and South America and Africa. In 2013 we did not only engage the participants in dialogue but also within the conference proposal process. To enhance the participatory character of the PLE Conference the review process was based on the shepherding idea. This means that the authors were offered support by experienced shepherds (mentors), who helped those submitting proposals by making suggestions for improvements in the process of writing the final versions of submissions. In this way we enhanced the quality of submissions and helped authors qualify for publication in one of the two Special Issues with selected best papers.

It was noticeable that the debate over PLEs has matured over the past four years. Rather than more abstract discussion on the definition and nature of PLEs, many of the contributions focused on studies of PLE implementation. At the same time the contexts in which PLEs are being developed and used are widening, encompassing informal learning and learning in the workplace and community as well as through educational institutions. The introduction of new technologies such as smart phones, tablets and cloud computing are also providing a powerful infrastructure for PLE development.

Two special edition of journals have already been published based on contributions to the PLE Conference 2013 conference. The first was a Special Issue of the EU eLearningPapers, Issue No. 35, entitled “Personal Learning Environments”1. The second is

1 http://openeducationeuropa.eu/en/paper/personal-learning-environments,
the Special Issue of the Journal of Literacy and Technology, JLT, Volume 15, No. 2, titled “Personal Learning Environments: Current Research and Emerging Practice”².

We hope that papers in these proceedings inspire your research and practice, taking forward the field of Personal Learning Environments to address the challenges of learning and diversity in smart cities.

July 2014

Ilona Buchem Gemma Tur Graham Attwell

Conference Organisation

GENERAL CHAIR AND BERLIN CONFERENCE CHAIR:

Ilona Buchem, Beuth University of Applied Sciences Berlin

Programme Chairs:
Ilona Buchem, Beuth University Berlin
Arunangsu Chatterjee, University of Plymouth

Martin Wolpers, Fraunhofer FIT

Melbourne Conference Chairs:
Sarah Pasfield-Neofitou, Monash University

Sarah McDonald, Monash University

Review Process:
Mandy Rohs, University Duisburg-Essen
Ademar Aguiar, University of Porto
Arunangsu Chatterjee, University of Plymouth

Luis Pedro, University of Aveiro:
Cristina Costa, University of Salford
Agnieszka Chrzaszcz, AGH Kraków

Website and Media:
Ilona Buchem, Beuth University

Tobias Hölterhof, University Duisburg-Essen

Chair of the Organising Committee (and liaisons with Australia):
Graham Attwell, Pontydysgu

Cristina Costa, University of Salford

Pre-Conference Chairs:
Kamakshi Rajagopal, Open University

Sabine Reisas, University of Kiel
MEMBERS OF THE ORGANIZATION COMMITTEE

Ademar Aguiar – University of Porto (Portugal)
Agnieszka Chrzaszcz, AGH Kraków (Poland)
Andreas Auwärter – Koblenz – Landau University (Germany)
Annette Pedersen – University of Copenhagen (Denmark)
Arunangsu Chatterjee – University of Leicester (UK)
Carlos Santos – University of Aveiro (Portugal)
Cristina Costa – Salford University (UK)
Firmino Alves – University of Aveiro (Portugal)
Frances Bell – University of Salford (UK)
Gemma Tur – University of the Balearic Islands (Spain)
Graham Attwell – Pontydysgu (UK)
Hugh Davis – University of Southampton (UK)
Ilona Buchem – Beuth University of Applied Sciences (Germany)
Joyce Seitzinger – Deakin University (Australia)
Linda Castañeda – University of Murcia (Spain)
Lisa Harris – University of Southampton (UK)
Luís Pedro – University of Aveiro (Portugal)
Kamakshi Rajagopal, Open University (NL)
Mandy Rohs, University Duisburg-Essen (Germany)
Mar Camacho – Universitat Rovira i Virgili (Spain)
Maria Perifanou – University of Athens (Greece)
Martin Wolpers – Fraunhofer Institute of Applied Information Technology (Germany)
Mónica Aresta – University of Aveiro (Portugal)
Ricardo Torres Kompen – Entrelaza – Asociación Tecnosocial (Spain)
Sabine Reisas, University of Kiel (Germany)
Sara Almeida – University of Aveiro (Portugal)
Sarah Pasfield-Neofitou, Monash University
Sarah McDonald, Monash University
Su White – University of Southampton (UK)
Tobias Hölterhof, University Duisburg-Essen (Germany)
MEMBERS OF THE SCIENTIFIC COMMITTEE

<table>
<thead>
<tr>
<th>Ademar Aguiar</th>
<th>Dr. Stefania Manca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernando Albuquerque Costa</td>
<td>Prof. Kerstin Mayrberger</td>
</tr>
<tr>
<td>Sara Almeida</td>
<td>Sarah McDonald</td>
</tr>
<tr>
<td>Firmino Alves</td>
<td>Dr. Alexander Mikroyannidis</td>
</tr>
<tr>
<td>Mónica Aresta</td>
<td>Felix Mödritscher</td>
</tr>
<tr>
<td>Graham Attwell</td>
<td>José Mota</td>
</tr>
<tr>
<td>Andreas Auwärter</td>
<td>Sarah Pasfield-Neofitou</td>
</tr>
<tr>
<td>Dr. Igor Balaban</td>
<td>Annette Pedersen</td>
</tr>
<tr>
<td>Dr. Frances Bell</td>
<td>Luis Pedro</td>
</tr>
<tr>
<td>Prof. Dr. Ilona Buchem</td>
<td>Dr. Mar Pérez-Sanagustín</td>
</tr>
<tr>
<td>Prof. Dr. Mar Camacho</td>
<td>Dr. Maria Perifanou</td>
</tr>
<tr>
<td>Dr. Linda Castañeda</td>
<td>Jeff Piatek</td>
</tr>
<tr>
<td>Dr. Arunangsu Chatterjee</td>
<td>Kamakshi Rajagopal</td>
</tr>
<tr>
<td>Dr. Mohamed Amine Chatti</td>
<td>Dr. Maria Ranieri</td>
</tr>
<tr>
<td>Prof. Dr. Gráinne Conole</td>
<td>Prof. Andrew Ravenscroft</td>
</tr>
<tr>
<td>Prof. Dr. John Cook</td>
<td>Prof. Dr. Peter Reinmann</td>
</tr>
<tr>
<td>Prof. Dr. Alec Couros</td>
<td>Dr. Wolfgang Reinhardt</td>
</tr>
<tr>
<td>Dr. Cristina Costa</td>
<td>Sabine Reisas</td>
</tr>
<tr>
<td>Catherine Cronin</td>
<td>Dr. Mandy Rohs</td>
</tr>
<tr>
<td>Agnieszka Chrzaszcz</td>
<td>Dr. Nancy Rubin</td>
</tr>
<tr>
<td>Hugh Davis</td>
<td>Carlos Santos</td>
</tr>
<tr>
<td>Assoc. Prof. Dr. Martin Ebner</td>
<td>Maren Scheffel</td>
</tr>
<tr>
<td>Dr. Palitha Edirisingha</td>
<td>Dr. Sandra Schoen</td>
</tr>
<tr>
<td>Prof. Dr. Antonio Dias de Figueiredo</td>
<td>Joyce Seitzinger</td>
</tr>
<tr>
<td>Dr. Denis Gillet</td>
<td>Paulo Simões</td>
</tr>
<tr>
<td>Assoc. Prof. Dr. Carlo Giovanella</td>
<td>Prof. Dr. Peter Sloep</td>
</tr>
<tr>
<td>Mark van Harmelen</td>
<td>Mark Smithers</td>
</tr>
<tr>
<td>Lisa Harris</td>
<td>Dr. Thomas Strasser</td>
</tr>
<tr>
<td>Lehosław Hojnacki</td>
<td>Dr. Gemma Tur</td>
</tr>
<tr>
<td>Tobias Hölterhof</td>
<td>Ricardo Torres Kompen</td>
</tr>
<tr>
<td>Prof. Dr. Malinka Ivanova</td>
<td>Timo van Treeck</td>
</tr>
<tr>
<td>Prof. Dr. Isa Jahnke</td>
<td>Dr. Riina Vuorikari</td>
</tr>
<tr>
<td>Nick Kearney</td>
<td>Prof. Dr. Steven Warburton</td>
</tr>
<tr>
<td>Dr. Ralf Klamma</td>
<td>Prof. Dr. Steve Wheeler</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Köhler</td>
<td>Su White</td>
</tr>
<tr>
<td>Moshe Leiba</td>
<td>Fridolin Wild</td>
</tr>
<tr>
<td>Prof. Dr. Tobias Ley</td>
<td>Prof. Dr. Martin Wolpers</td>
</tr>
<tr>
<td>Prof. Dr. Johannes Magenheim</td>
<td>Dr. Maria Zajac</td>
</tr>
</tbody>
</table>
CONTENTS

Learner Control in Personal Learning Environments: A Cross-Cultural Study
Ilona Buchem, Gemma Tur, Tobias Hoelterhof

A pedagogy-driven framework for integrating Web 2.0 tools into educational practices and building personal learning environments
Ebrahim Rahimi, Jan van den Berg, Wim Veen

Bridging Personal Learning Environments: Interfacing personal environments and Learning Management Systems: The example of a bookmarking tool
Tobias Hölterhof, Richard Heinen

Gamifying Quantified Self Approaches for Learning: An Experiment with the Live Interest Meter
Benedikt S. Morschheuser, Verónica Rivera-Pelayo, Athanasios Mazarakis, Valentin Zacharias

The mobile as an ad hoc PLE- Learning serendipitously in urban contexts
Ruthi Aladjem, Rafi Nachmias

An exploratory study of the personal learning Environments of security and investigation professionals
Antony E. Ratcliffe

Connected older adults: conceptualising their digital participation
Linda De George-Walker, Mark A. Tyler

Innovation, knowledge and sustainability with PLEs: an empirical analysis from SAPO Campus Schools pilots
Fátima Pais, Carlos Santos, Luís Pedro

Personal Learning Environments in Smart Cities
Ilona Buchem, Mar Pérez-Sanagustín

Decentralized badges in educational contexts: the integration of Open Badges in SAPO Campus
Carlos Santos, Luís Pedro, Sara Almeida & Mónica Aresta
CONTENTS

Using Gamification to Improve Participation in a Social Learning Environment
Jorge Simões, Rebeca Redondo, Ana Vilas, Ademar Aguiar .. 157

Investigating teachers’ perception about the educational benefits of Web 2.0 personal learning environments
Ebrahim Rahimi, Jan van den Berg, Wim Veen ... 175

Personal learning environments: a conceptual landscape revisited
Sebastian H.D. Fiedler, Terje Väljataga .. 195

Beyond books: The librarian, the research assignment, and the PLE
Alison Hicks .. 211

Reflecting the Learning Process Using LAMA
Helena Dierenfeld, Agathe Merceron ... 218

PLE as an Assessment for Learning Tool in Teacher Education
Carmen Arbonés, Isabel Civera, Neus Figueras, Cristina Montero, Salvador Rodríguez, Theresa Zanatta ... 226

Personal Learning Environments for Inquiry-Based Learning
Alexander Mikroyannidis, Alexandra Okada, Peter Scott ... 235

New Potentials of Hypermedia Video for Gathering and Providing of Procedural ‘Knowledge’ in Industrial Environments
Robert Strzebkowski, Alexander Schulz-Hyen, Sven Spielvogel, Sebastian Riedel .. 246

Personal Information Spaces are the students’ first and foremost PLE
Sharon Hardof-Jaffe, Rafi Nachmias ... 261
Table of Contents

Case-based Workflow Modeling in Support of Automation the Teachers’ Personal and Social Behavior
Malinka Ivanova and Mirjam Minor 276

A theoretical analysis of the socio-material entanglement of Personal Learning Environments and its methodological and pedagogical implications
Sabine Reisas 288

Do you want to connect? : Recommendendation strategies for building Personal Learning Networks
Kamakshi Rajagopal, Jan van Bruggen, Peter B. Sloep 303

PLEs and epistemological practice – The meaning of Self organization competency for PLE based learning
David Kergel 310

ThirdSpace : orchestrating collaborative activities in PLEs for formal learning
Yvan Peter, Eloy D. Villasclaras-Fernández, Yannis Dimitriadis 320

Technology Enhanced Textbook Provoking active ways of Learning
Wolfgang Neuhaus, Jürgen Kirstein, Volkhard Nordmeier 331

The university-wide introduction of an ePortfolio system as transdisciplinary task: Results of an implementation process and perspectives on an optimized process model
Jörg Hafer, Alexander Kiy 344

Design as Inquiry: Socially shared PLEs by the example of collaborative note taking. A speed design process.
Heidrun Allert, Sabine Reisas 355

Social badges dynamics in institutional supported platforms
Carlos Santos, Luís Pedro, Sara Almeida, Mónica Aresta 357
Case-based Workflow Modeling in Support of Automation the Teachers’ Personal and Social Behavior

Malinka Ivanova and Mirjam Minor

Abstract

One part of teachers is very active participant in virtual social space forming Personal Learning Networks (PLNs) with the aim to receive and share knowledge, taking the role of a tutor or a learner. Their time and effort could be optimized if they utilize some functions for automation of important and often repeated activities. The paper explores several possibilities for performance support of teachers when they use their PLNs. The workflow technology of business informatics is applied to model activity structures that could be recommended for following by teachers. This could shorten the distance among learning, effectiveness and time.

Introduction

Nowadays, teachers receive a wide range of knowledge using social networking sites, looking for suitable contacts and appropriate content. They spend less or much time in the networked world performing different activities to search, interact, share, like/dislike, group, etc. Their time and effort can be optimized if they utilize some functions for automation like: group people, group messages, prioritize activities, or if they use tools for searching on a given criterion, filtering, recommending, etc. On the other side, the previous research shows that Personal Learning Network (PLN) has potential to facilitate the development of given personal and professional skills and abilities. PLN can be used for learning through active participation or through observation of others’ activities. The teachers’ behavior during the PLN utilization can also be optimized through different techniques for automation to shorten the distance among learning, effectiveness and time.

For the purposes of this exploration we use the gathered data from the previous study [Iva 12] and several scientific reports, e.g. Twitter in EFL education [Mor 09], Graasp for collaborative learning [Li 12], social media for engineering communication [Meh 10]. Current research papers are related to the typical activities performed by teachers and learners when they use social networking sites. These activities are not structured in any criterion. One interesting example for activities grouping in time (weekly) is presented in [Wan 12]. The authors perform an exploratory study about the Facebook utilization as a learning management system to facilitate teaching and learning in two elective courses (formal education). For this purpose a special Facebook
The identified teachers’ activities in social networking sites are following: share, communicate, collaborate, comment, give opinion, announce event, announce results, moderate discussion, search, add contacts, upload files, read. We are going further not only to select the activities, but also to ascertain the logically arranged sequences of activities. Modeling of workflows is performed from two perspectives for automation: (1) functional – using the main functions of social media to support teachers (e.g. add comment, add people, upload file, like), (2) operational – considering the personal preferred operations in the process of automation.

The methodology of case-based adaptable workflows is applied to structure the activities of teachers in social networks and to adapt to their personal needs. Case-based reasoning [Aam 94] is related to a collection of cases that record performed activities. These gathered cases could be used to: (1) recommend the most suitable case to support teacher’s behavior or (2) to form a new case based on the existing cases and emerging new situation [Min 14].

The aim of the paper is to explore the possibilities for automation of several regularly repeated activities of teachers when they use their Personal Learning Networks and to develop structured case-based workflows. This will be a base and first step for software development. In this work several workflows are created, describing some typical activities for teachers.

Related work

When we refer to the effectiveness of teachers’ activities, we take into consideration previous research related to people and content searching, filtering and recommending. In this section several examples showing facilitation of social networks’ users through available automated functions are explored. These examples are used for better understanding user needs and existing technical solutions.
Automation techniques

- A method for selection of social media content (Twitter) is proposed in [DeC 11]. The selection criteria are based on the different weights for a wide variety of content attributes. The content diversity is quantified then through applying the information theoretic measure entropy. The result set includes minimum distortion on a given topic.

- A system that tracks conversations on social platforms (Facebook and Twitter) is developed to identify and prioritize posts and messages that are related to a given topic (enterprises). An agent is created with functions facilitating the processes of monitoring, tracking and responding to customers [Ajm 13]. Different messages are connected to different weights to be prioritized. For example, messages with complaints have high priority and stimulate discussion and active participation.

- The problem about influential users and passive users on Twitter is treated in [Rom 11]. The authors present an algorithm that identifies who is an active participant and influences others and who is a passive user (does not read messages or ignores them, follows many people, re-tweets rarely). User activity related to posts forwarding is tracked and is a base for algorithm calculation. The algorithm can filter content that is most rated and liked.

- Personalized item recommendation widget is presented in [Guy 10]. Recommendations are done after collecting the relationships among people, tags and items. The recommender system is evaluated and the results point that a hybrid people-tag-based recommender has several advantages than recommendations based on people work.

- Another recommender system based on user-model is developed in [Set 08]. The software learns user's preferences about the received knowledge, predicts the usefulness of given messages for him and recommends suitable ones. The proposed solution is evaluated using social networking website Orkut and results are promising according to the authors.

- A framework with a possibility to summarize Twitter stream messages, retirement of messages and their reconstruction around a given topic is presented in [Yan 12]. An algorithm detects evolutionary events between two different intervals of time. The authors wish to understand how user interests change and evaluate and how topics are trending.

Types of Users in Social Networks

The types of Social Networking Sites (SNS) users according to their performed activities and level of participation are examined in [Bra 11]. The authors divide users in five groups: sporadic, lurkers, socialisers, debaters and actives. The data are gathered after a survey and users’ typology is verified after quantitative and qualitative analysis.

An empirical study and analysis about the activities and contributions of users in online social networks are analyzed in [Guo 09]. The findings point that user behavior
is related to daily and weekly contributions through posting, but their participation time cannot be described with exponential distributions. The authors propose models describing how users create links and how their networks progress in time.

The factors that are important for lifetime forming in online social networks are researched in [Lan 11]. They divide lifetime to active and passive according to users’ activities and behavior. The prerequisites for passive lifetime are two: received activity and undirected activity among friends of a user. Authors have five recommendations contributing to stimulation of active behavior: encouragement for friendships, making friendships not only with popular users in the network, encouragement for communication, friendly attitude to new users, and encouragement for frequent posting.

For the purposes of our research we divide users of social networking sites to passive and active in their time of usage. They can be characterized by different level of activeness in different time of their learning sessions according to their learning priorities and goals. The users learn by observation or through participation and possess favorite activities. The learning of these users could be optimized if recommendations with structured activities are supposed. Figure 1 presents a model showing the criterion and procedure for structured workflows generation. The software gathers data and understands the favorite activities of a SNS user; creates a user model with preferences; classifies this user in the category of passive or active for the current learning session; generates workflow with structured activities to satisfy or motivate for participation the passive user and to satisfy the active one.

![Figure 1: Criterion and procedure for generation of structured workflows](image)

We created two different sets with activities typical for passive and active users. Under passive user we understand a person who prefers to learn alone without getting advantages of participation and communication. Passive users learn through observation: read the shared knowledge, accept or not friendships, follow people, monitor activities, track activity stream, use applications with special purposes, search. The activity set of active users consists of activities that contribute to enrichment of the network knowledge: add comments, publish content/opinion, share link/file, like/dislike, join/create groups, use chat, communicate via direct messaging or other applications, extend contacts, make friendships.
Serendipity, Accidental and Intentional Learning

Usually, learning in social networks occurs accidentally and in a serendipitous way and it depends on the specificity of created Personal Learning Network. Every individual teacher sees different messages and unique information stream. This fact has an impact on learning curiosity and changing learning needs. Kop [12] argues that emerging applications such as recommenders, RSS aggregators and microblog platforms are effective because they can facilitate serendipitous learning on open online networks. Teachers have control on their PLNs organization, but also they are in touch with unexpected information sources. At this moment serendipity is not automated, just serendipitous content and contacts could be recommended.

On the other hand, PLNs are created intentionally according to the teachers’ interests and future plans. This suggests that they strive to be connected to people who are sources of topic related content. In spite of the intentional disposition of PLNs, we find many serendipitous events and processes. In this aspect our supposition in the paper is that teachers respond to serendipitous events in intentionally topic-driven PLNs (Figure 2).

![Figure 2: Serendipitous events in intentionally topic-driven PLNs](image)

Research methods

The research design of this paper follows the design-oriented paradigm of business informatics [Hev 04]. It aims at conducting a feasibility study on whether workflow technology is applicable in order to partly automate the work of teachers in PLNs and to increase the reusability of this work. Following a build-and-evaluate cycle as proposed in [Hev 04], a workflow model for learning procedures within PLNs is created (during the build phase) and its technical feasibility is tested by deriving a couple of workflow instances from the activities observed in recent PLNs (during the evaluate phase). The results of this technical feasibility study are a prerequisite for our future work. The two main research questions are: Q1 Representation: How can activities of teachers in social networks be represented and structured in a workflow model? Q2 Applicability: Can the workflow model be populated by cases (workflow instances) for different learning scenarios and user types?
The representation is developed by creating a workflow model following recent technical standards for workflow design, and the applicability is tested by modeling a set of diverse workflow samples.

Modelling workflows

Traditionally, workflows are “the automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules” [WFM 99]. Recently, a broader notion is emerging, where a workflow describes any flow of activities. This notion includes the activities of a learner during the use of a PLN for a particular learning task. For instance, a learner might prepare a course on a novel topic and use the PLN for identifying the most important issues and for collecting teaching and examination material.

A workflow consists of a control flow and a data flow. A set of activities combined with control-flow-structures like sequences, parallel or alternative branches, and loops forms the control flow. In addition, activities consume resources and create certain products, which both can be physical matter (such as paper books) or information. The data flow describes the interaction of activities with resources and products.

Workflows can be executed automatically by a Workflow Management System (WfMS). The WfMS enacts the workflow and controls its execution. There are two types of activities: manual activities and automated activities [Wes 12]. Manual activities are performed by human beings who might use software systems during execution or who might perform the activity without any software, for instance, by reading a book. Automated activities do not involve a human user; they are executed by a software service, for instance, by a Twitter analysis tool. The WfMS triggers the activities in the order that is specified by the control flow. In case of an automated activity, it calls according to the software service. In case of a manual activity, it informs the user via a work list (a kind of interactive to-do-list) what is to do, which tools and data are available, and whether there is a deadline until when the activity has to be finished. When an activity has finished execution, the WfMS receives the results of the activity via the return values from a service or by a click on the completed button of a work list. Then, the WfMS triggers the next activity or activities.

In this work, several workflows are created, describing some activity structures for teachers in their active timeline and passive timeline. Here are shown the workflows in Business Process Modeling Notation (BPMN) [Wes 12] related to: the process of getting to know a new item from the topic, getting feedback for slides and how to discover an expert for a topic.
Workflow 1: Getting to know a new subtopic from the topic

Workflow 1 for a passive user

W1 describes the process of getting to know a new subtopic from the topic (Figure 3). The first step in the workflow is to receive a serendipitous message. If this message contains intriguing information in the area of the teacher’s interests, then the user can go further clicking on the link. Then the software could suggest this teacher to subscribe to the information source (if a RSS feed exists) or/and to follow the person who share this information. Also, the software could recommend a search to be performed for finding the similar information sources or resources. The received knowledge should be summarized in different forms (note taking, passing quiz, game playing, etc.).

![Figure 3: Workflow 1 for a passive user](image)

Workflow 1 for a passive user with an intention to be activated

The aim of this workflow is not only to suppose future activities, but also to stimulate participation of a passive user (Figure 4). After receiving a message and reading its content, at the beginning the person acts as a passive user subscribing to the source or/and following the person who shares this information. Then, the software recommends to post opinion or/and communicate with the human information source. At the final step, the knowledge has to be summarized using different methods.

![Figure 4: Workflow 1 for a passive user who could be activated](image)
Workflow 1 for an active user
The suitable activities for an active user after reading the content of a message could be to comment/like/share content, search for other resources that could again be commented/liked/shared, etc (Figure 5). The last step is related to drawing of conclusion about the reached knowledge.

![Figure 5: Workflow 1 for an active user](image)

Workflow 2: Getting feedback for slides

Workflow 2 for an active user
W2 describes how to get feedback for slides (Figure 6). W2 is suitable for an active user who is sociable and should publish the content. In the first step the slides should be put on SlideShare. Then the slides could be announced in the social networks and the link could be shared. The user goes further with performing activities such as: to describe the presentation or a separate slide, to ask questions related to the presented topic and to organize a discussion through replaying the received answers. At the end the feedback is collected and summarized.

![Figure 6: Workflow 2 for an active user](image)
Workflow 3: Discover an expert for a topic

Workflow 3 for a passive user
W3 shows how to discover an expert for a topic (Figure 7). First, the user should be interested in the content of a message and should read it. Then the user could perform content/people search through the Twitter/Facebook stream. The received results should be selected that should lead to the finding of a person with an advanced knowledge about the given topic. In the subsequent step the user could subscribe to the information source or follow the found expert.

![Figure 7: Workflow 3 for a passive user](image)

Workflow 3 for a passive user with an intention to be activated
This workflow is modeled for a passive user who can be activated (Figure 8). In this case as a subsequent step is suggested an active action like communication with the found expert.

![Figure 8: Workflow 3 for a passive user who could be activated](image)
Workflow 3 for an active user

When a user is active and he is looking for an expert, then he could perform several activities: to join a specific group, to connect and communicate with people, to follow them and their messages (Figure 9). Then the user could select the best person fitting his interests.

Conclusions

The paper presents models of structured activities in time and according to the learning priority and learning needs utilizing case-based workflow technology. The workflows originate from serendipitous events and they are categorized according to the user type. These workflows describe important cases of activities performed during the PLNs organization and utilization. They will support teachers through recommendations and guidance giving, making their learning more effective. The created workflows are the first step in the process of software development. They figure the main functions for activities’ automation and semi-automation facilitating the teachers’ personal and social behavior. We think that the automation of typical activities is a crucial prerequisite leading to the achievement of improved learning quality.
REFERENCES

FIGURES

Figure 1 Criterion and procedure for generation of structured workflows
Figure 2 Serendipitous events in intentionally topic-driven PLNs
Figure 3 Workflow 1 for a passive user
Figure 4 Workflow 1 for a passive user who could be activated
Figure 5 Workflow 1 for an active user
Figure 6 Workflow 2 for an active user
Figure 7 Workflow 3 for a passive user
Figure 8 Workflow 3 for a passive user who could be activated
Figure 9 Workflow 3 for an active user

CONTACT DETAILS

Assoc. Prof. Malinka Ivanova
Technical University of Sofia
College of Energy and Electronics
Bvd. Kl. Ohridski 8
1000 Sofia
E-Mail: m_ivanova@tu-sofia.bg

Prof. Mirjam Minor
Johann Wolfgang Goethe-University Frankfurt am Main
Institute for Computer Science
Robert-Mayer-Straße 10
D-60325 Frankfurt am Main
E-Mail: minor@informatik.uni-frankfurt.de