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ABSTRACT 

The process of four photon parametric mixing can be used to convert the input laser sources, working in CW and pulse 

regimes, into light at several different frequencies. An effective parametric energy conversion can be observed when phase 

matching conditions between the waves are satisfied. The basic theoretical investigations are focused on efficienty of the 

four-photon mixing and parametric gain with applications such as all-optical signal sampling, time-demultiplexing, pulse 

generation and wavelength conversion. The parametric amplifiers have capacity to provide high gain and low noise at 

arbitrary wavelengths with proper fiber design and pump wavelength allocation. The problem with the generation of new 

frequencies on distances less than one coherent length in the process of parametric four-photon mixing was solved in 

approximation of fixed electric field of the pump wave. The idea of our research is to solve the more general problem in 

which it is taken into account the mutual action of the first and second order of dispersion and all real χ(3) nonlinear 

processes on the parametric four-photon mixing. In CW regime the solutions of the problem, presented above, was solved in 

the form of Jacobi elliptic functions. In pulse regime we found optimal conditions, where the process of energy exchange is 

still effective. In this regime a quasi-periodic conversion is observed and group velocity difference between the pump and 

signal wave is compensated by nonlinear mechanisms.  

 
Keywords: Self-phase modulation, cross-phase modulation, parametric four-photon mixing, analytical solutions, Jacobi 

functions, numerical calculations 

1. INTRODUCTION 

Parametric processes are well-known phenomena in materials providing 𝜒(3) nonlinearity. The process of four-photon 

parametric mixing is usually used to convert input light pulse into light at several different frequencies. Parametric 

interaction and energy conversion are strongest, when there are phase matching conditions between the waves 1. The 

basic studies are related to the problems of effective amplification of the signal waves with application in optical 

amplifiers. In regime of amplification usually short cut equations are used and solved 1-7. The more general problem of 

periodic energy exchange at long distances between pump, signal and idler waves in pulse regime requires numerical 

solving of the nonlinear propagation equations, including first and second order of dispersion, self and cross-phase 

modulation and their influence on the process of parametric four-photon mixing. In CW regime the amplitude equations do 

not contain terms with group delay and dispersion. In this regime, as it shown in 8-9 the problem can be solved analytically 

with solutions in form of elliptical Jacoby functions, leading to periodic energy exchange between pump and signal waves. 

The effective parametric amplifiers in CW regime work with spectral delay between the pump and signal waves of the order 

of 𝛥𝜆 < 40 nm 7.  

We need to ask the question: is it possible an effective energy exchange in pulse regime? This is the main idea of 

present paper:  to investigate the parametric interaction between spectrally close picoseconds pulses 𝛥𝜆 = 𝜆𝑝 − 𝜆𝑠 <

40nm, where 𝜆𝑝 and 𝜆𝑠 are respectively the carrier wavelength of the pump and signal waves, with time duration of the 
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pulses 1-10 ps (𝛥𝜆pulse ≈ 3 − 0.3 nm). The numerical experiment is provided near to zero dispersion region of single mode 

optical fiber. In this spectral region and for these small spectral shifts between the pulses it is possible to observe a 

compensation of the group velocity delay by nonlinear mechanisms 10. As it can be seen from the numerical simulations, 

this leads to self-confinement of pump and signal waves and to an effective quasi-periodic exchange of energy between 

them.  

 

2. BASIC EQUATIONS IN CW REGIME 

The system of equations that describes the generation of signal and idler waves from a pump wave in the frames of 

Four Photon Parametric Mechanism (FPPM) at few coherent lengths including in addition the effects of Self-Phase 

Modulation (SPM) and Cross Phase Modulation (CPM) is well known 7: 

  

𝑖
𝜕𝐴𝑝

𝜕𝑧
= 𝛾𝑝 (2𝐴𝑠𝐴𝑖𝐴𝑝

∗ 𝑒−𝑖𝛥kz + |𝐴𝑝|
2

𝐴𝑝 + 2|𝐴𝑠|2𝐴𝑝 + 2|𝐴𝑖|
2𝐴𝑝) ,

𝑖
𝜕𝐴𝑠

𝜕𝑧
= 𝛾𝑠 (𝐴𝑝

2 𝐴𝑖
∗𝑒𝑖𝛥kz + |𝐴𝑠|2𝐴𝑠 + 2|𝐴𝑝|

2
𝐴𝑠 + 2|𝐴𝑖|

2𝐴𝑠) ,

𝑖
𝜕𝐴𝑖

𝜕𝑧
= 𝛾𝑖 (𝐴𝑝

2 𝐴𝑠
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𝐴𝑖 + 2|𝐴𝑠|2𝐴𝑖) ,

   (1)  

where As(z), Ai(z) and Ap(z) are complex amplitude functions of signal, idler and pump waves, s, i, p, 2kp=ks+ki+k, 

2ωp=ωs+ωi are respectively the nonlinear coefficients of the medium, the wavevector mismatch and the frequency 

conversion of the three waves. Usually this system is solved in approximation of fixed strong pump intensities 1, 7. Thus, 

conditions for maximal amplification of signal waves were obtained. The real propagation in CW regime and parametric 

interaction at long distance in the optical fiber can be obtained by solving analytically the system of amplitude equations 

(1). 

We are looking for solution of the basic system of equations (1) by applying well-known mathematical method, 

described in 9:  

      

𝐴𝑖 = 𝑎𝑖𝑒
𝑖𝜙𝑖 ,

𝐴𝑝 = 𝑎𝑝𝑒𝑖𝜙𝑝 ,

𝐴𝑠 = 𝑎𝑠𝑒𝑖𝜙𝑠 .

          (2) 

Thus, the system of equations (1) takes the form: 
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         (3) 

where ap(z)=|Ap(z)|, as(z)=|As(z)| and ai(z)=|Ai(z)| are real functions describing the waves amplitudes, while 𝜙p(z), 𝜙s(z) 

and 𝜙i(z) are phase functions of the waves, and ѱ = 2𝜙p – 𝜙s – 𝜙i + Δkz is the generalized phase. 

In 9 we have solved that system (1) by equalizing the real and imaginary parts on both sides of the equalities (3). By 

number of transformations and substitutions its analytical solutions can be presented in the form of Jacobi elliptic sine 

functions 9: 

    

𝑎𝑝
2 =

1

2𝛾𝑠𝛾𝑖
[𝐶𝑝 − 2𝑘sn(𝜂; 𝑘)],

𝑎𝑠
2 =

1

2𝛾𝑝𝛾𝑖
[𝐶𝑠 + 𝑘sn(𝜂; 𝑘)],

𝑎𝑖
2 =

1

2𝛾𝑠𝛾𝑝
[𝐶𝑖 + 𝑘sn(𝜂; 𝑘)],

                        (4) 

where the constants 𝐶𝑝, 𝐶𝑠, and 𝐶𝑖 are related to the conservative lows by the following relations: 
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𝐶+U r

1−𝑈2 ,
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1

2

𝐶+U r

1−𝑈2 ,
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2
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                               (5)  

    𝛾𝑠𝛾𝑖𝑎𝑝
2 + 𝛾𝑠𝛾𝑝𝑎𝑖

2 + 𝛾𝑝𝛾𝑖𝑎𝑠
2 = 𝐶 = const,                           (6) 

    𝛾𝑝𝛾𝑖𝑎𝑠
2 − 𝛾𝑠𝛾𝑝𝑎𝑖

2 = 𝐶1 = const,                    (7) 
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𝛥𝑘√𝛾𝑠𝛾𝑖

2
+ 𝑉,                                    (8) 

    𝑈 =
𝑚0

8𝛾𝑝√𝛾𝑠𝛾𝑖
,                            (9) 

    𝑉 =
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4𝛾𝑝√𝛾𝑠𝛾𝑖
,                            (10) 

    𝜂 = 2𝑧√
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,                   (11) 
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            (12) 

   𝑘2 =
1

2
(

𝐶+U r

1−𝑈2) − 1 −
2𝐵0𝑟

(𝐶+U r)
,           (13) 

where 0 < 𝑘 < 1, constants m0, m1 and m2 count for the influence of the processes of SPM and XPM. The parameters C 

and C1 are constants connected with the conservation lows; B0 is integration constant; r, U, V and η are additional 

constants simplifying the expressions. These expressions (4)-(13) characterize the periodic energy exchange between the 

intensity of the pump аp
2 from one hand and the intensities of the signal аs

2 and idler аi
2 waves from other hand during 

their propagation in optical fiber. It is important to mention that this periodic energy exchange between the three waves 

is under the influence of processes of FPPM, SPM and CPM. They are defined by the values of the constants k, C, and 

C1, which depend on the initial conditions and the initial generalized phase Ψ(0).  

 

3. BASIC EQUATIONS IN PULSE REGIME 

The pulses at different frequencies as pump, signal and idler waves propagate in single mode fibers with different group 

velocities and dispersion constants. The normalized envelope equations governing their propagation are well known 10 -11 

and in a coordinate system, moving with the group velocity of the pump wave 𝑣𝑝can be written as:  
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2
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         (14) 

We normalize the equations to the material and wave characteristic of the pump wave and in that way we obtained the 

following constants: 

𝑧 = 𝑧 𝑧disp⁄ ;  𝑧disp = 𝑡0𝑝
2 𝑘𝑝

"⁄ ;    𝛾𝑝 = 𝑘𝑝𝑛2|𝐴0
𝑝

|
2

𝑡0𝑝
2 𝑘𝑝

"⁄ ;    𝐴𝑝 = 𝐴0
𝑝

𝐴𝑝;  𝐴𝑠 = 𝐴0
𝑝

𝐴𝑠;  𝐴𝑖 = 𝐴0
𝑝

𝐴𝑖 ,          (15) 

1

𝛥𝑣𝑠
=

𝑣𝑝−𝑣𝑠

𝑣𝑝
2 ;       

1

𝛥𝑣𝑖
=

𝑣𝑝−𝑣𝑖

𝑣𝑝
2 ;      𝐷𝑠 =

𝑘𝑠
"

𝑘𝑝
" ;     𝐷𝑖 =
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"

𝑘𝑝
" ,                  (16) 

     𝛾𝑠 =
𝑘𝑠

𝑘𝑝
𝛾𝑝;    𝛾𝑖 =

𝑘𝑖

𝑘𝑝
𝛾𝑝,                                            (17) 
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where zdisp, t0p, n2, 𝐴0
𝑝
 are respectively dispersion length, time duration of the pump wave, nonlinear refractive index for 

the pump wave, initial amplitude of the pump wave; vi and vs are correspondingly group velocity of the signal and idler 

waves; 𝑘𝑝
"  , 𝑘𝑠

"  and 𝑘𝑖
" are group velocity dispersions of the pump, signal and idler waves. The normalized group 

velocities differences of the signal and idler waves with respect to the pump wave and the normalized dispersions are 

presented as follow vs, vi, Ds, Di. 
In our numerical calculation we used the pump wave, which propagates in fused silica single mode fiber. The main 

wavelength of the pump was chosen to be in negative dispersion region of the fiber at 𝜆𝑝 = 1.36μm and with time 

duration  𝑡0𝑝 = 1 ps (𝛥𝜆𝑝 ≃ 3 nm). By two color scheme it is possible to be generated small signal and idler waves at 

spectral distances 𝛥𝜆 = 𝜆𝑝 − 𝜆𝑠 = 40 nm which is typical for parametric amplifiers. Thus, the signal wave is at 𝜆𝑠 ≃

1.4nm, while the idler wave is at 𝜆𝑖 ≃ 1.32 nm and they are well spectrally separated. The dispersion characteristics of 

the pump, signal and idler waves are presented in the following Table 1.  

Table 1. 

Carrying 

wavelenght 

[μm] 

Group velocity [m/s] Dispersion of the group velocity [s2/m] 

𝜆𝑝 = 1.36 𝑣𝑝 = 2.05078 × 108 𝑘𝑝
" = −0.7855 × 10−28 

𝜆𝑠 ≃ 1.4 𝑣𝑠 = 2.05095 × 108 𝑘𝑠
" = −1.17 × 10−28 

𝜆𝑖 ≃ 1.32 𝑣𝑖 = 2.05105 × 108 𝑘𝑖
" = −0.416 × 10−28 

 

The dimensionless group velocities, dispersion parameters and the nonlinear coefficients can be obtained from equations 

(15)-(17) and are presented in Table 2. 

 

Table 2. 

Carrying 

wavelenght 

[μm] 

Normalized Group 

velocity  

Dispersion parameter Nonlinear coefficient 

𝜆𝑝 = 1.36 1 𝑣𝑝⁄ = 0 1 1 

𝜆𝑠 ≃ 1.4 1 𝛥𝑣𝑠⁄ = 0.0027 𝐷𝑠 = −1.5 𝛾𝑠 = 1.0294 

𝜆𝑖 ≃ 1.32 1 𝛥𝑣𝑖⁄ = 0.0017 𝐷𝑖 = −0.4 𝛾𝑖 = 0.97 

 

The numerical experiment is provided by solving the nonlinear system (14) with split-step Fourier method and 

parameters from Table 2. The initial condition in the experiment is strong pump wave with intensity near to the critical 

for soliton regime: 

     𝐴𝑝
init = secℎ(𝑡).                     (18) 

The signal and idler waves are with initial phase 𝜙 = 𝜋 2⁄ , Δk=0.2 and very small initial amplitudes: 

     𝐴𝑠
init = 𝐴𝑖

init = 0.01secℎ(𝑡)𝑒𝑖𝜋 4⁄ .                                                  (19) 

The time evolution of the three waves is presented on Fig. 1. As it can be seen significant energy exchange between the 

pump and signal waves is observed. Other important result is that there is no walk-off effect. It is expected for spectrally 

close laser pulses and as it is predicted in 10, it is due to the nonlinear self-confinement by SPM and FPPM effects.  

Proc. of SPIE Vol. 11332  113320H-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

Figure 1. Time evolution of pump, signal and idler waves propagating in the negative dispersion region of single mode optical fiber. 

The pump wave is clearly seen in the beginning, while at distance of one-two dispersion lengths signal and idler waves are generated. 

The pulses are spectrally closer and there is no walk-off effect. The self-confinement is due to influence of CPM and FPPM effects on 

the relative motion of the waves 10. Significant energy exchange is observed. 

 

The graph of energy transformation of each wave 𝐸𝑗 = ∫ |𝐴𝑖|
∞

−∞
dt;  𝑗 = 𝑝, 𝑠, 𝑖 is presented on Fig 2. Comparing with the 

results, obtained for CW regimes, in pulse regime instead of periodic exchange we observe quasi-periodical energy 

exchange between the pump and signal waves. 

 

 

 

Figure 2. Graph of energy transformation of each wave 𝐸𝑗 = ∫ |𝐴𝑖|2∞

−∞
dt;  𝑗 = 𝑝, 𝑠, 𝑖. Instead of periodic exchange as it is possible in 

CW regime, in pulse regime we observed a quasi-periodical exchange with very long period of oscillations of order of several 

diffraction lengths. 

 

4. CONCLUSIONS 

In the presented work it is investigated the FPPM effect in two different regimes. In CW regime the corresponding 

nonlinear system of envelope equations (1) is solved analytically. The analytical solutions are described by Jacobi 

functions. A periodic exchange with period determinated by the parameter 𝑘 of the elliptical sn(𝜂; 𝑘) function is 
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obtained. The mathematical method can be applied for waves with arbitrary initial intensities, generalized phase and 

wave number mismatch. 

In pulse regime of propagation the parametric interaction is investigated in negative dispersion region of single mode 

optical fiber near to zero dispersion. The time duration of the pulses in the experiment was 1 ps. The spectral differences 

between pump, signal and idler waves was chosen to be around 𝛥𝜆 = 𝜆𝑝 − 𝜆𝑠 = 40nm. Due to small group delay 

between pump and signal waves, there are no walk-off effect and an effective generation is possible. In pulse regime, 

instead of periodic, a quasi-periodic exchange of energy can be observed. The result can be used for parametric 

amplifiers, working in pulse regime in single mode fibers.  
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