International conference on High Technology for Sustainable Development

HiTECH 2018

PROCEEDINGS

JUNE 11 – 14 2018
National Science and Technical Centre
108 Rakovski St, 1000 Sofia, Bulgaria

IEEE Catalog Number CFP18Q62-CDR
2018 International Conference on High Technology for Sustainable Development (HiTech) is organized by:

- Technical University of Sofia (TU-Sofia)
- IEEE Bulgarian Section
- Federation of the Scientific and Technical Unions in Bulgaria (FSTU)
- University of Technology of Troyes

In cooperation with:

- Institut Francais Bulgarie
- The Union of Electronics, Electrical Engineering and Communications (CEEC)
International conference on High Technology for Sustainable Development
HiTECH 2018

Honorary chairmen:
Georgi MIHOV – TU - Sofia

Conference chairmen:
Kiril ANGUELOV, TU-Sofia

Scientific Secretaries:
Iliana MARINOVA, TU-Sofia

Local Organizing Committee:
Stefan PATCHEDJIEV, CEEC
Kiril ALEXIEV, Bulgarian IEEE Section
Rossitza GOLEVA, Bulgarian IEEE Section
Katya Asparuhova, Bulgarian IEEE Section
Nikolay HINOV, Bulgaria
Kidiyo KPALMA, Bulgaria
Roumen KOUNTCHEV, Bulgaria
Joseph RONSIN, France

Kazumi NAKAMATSU, Japan
Nikolay MIHAIOLOV, RU-Rousse
Abdel-Badeeh SALEM, Egypt
Christian-SCHAEFFER, France
Nadege TROUSSIER, France
Ludmil STOYANOV, Bulgaria
Georgy POPOV, Bulgaria
Agata MANOLOVA, Bulgaria

Program Committee:
Slavoljub ALEKSIC, Serbia
Alexander ALEXANDROV, Bulgaria
Chavdar ALEXANDROV, Bulgaria
Gancho BOJILOV, Bulgaria
Grigore CIVIDJIAN, Romania
Octavian CORNEA, Romania
Peter DINEFF, Bulgaria
Bruno FRANCOIS, France
Fernando GARCIA, Spain
Zeljko HEDERIC, Croatia
Nikolay HINOV, Bulgaria
Nikolay Hristov, France/Bulgaria
Barna IANTOVICS, Romania
Yasushi KANAI, Japan
Kidiyo KPALMA, France
Antonios KЛАDAS, Greece
Roumen KOUNTCHEV, Bulgaria
Vladimir LAZAROV, Bulgaria
Iliana MARINOVA, Bulgaria
Ivan MASLAROV, Bulgaria
Nicolae MUNTEAN, Romania
Kazumi NAKAMATSU, Japan
Ludmila NIKOLOVA, Russia
Gennadiy Zиновьев, Russia

Kiril ANGUELOV, Bulgaria
Antero ARKKIO, Finland
Laura BACALI, Romania
AlekSander BEKIARSKY, Bulgaria
Gilles NOTTON, France
Vassil PALANKOVSKI, Austria
Ioan POPA, Romania
Maurizio REPETTO, Italy
Joseph RONSIN, France
Sergey RYVKIN, Russia
Yoshifuru Saito, Japan
Abdel-Badeeh SALEM, Egypt
Christian-SCHAEFFER, France
Wlodzimierz SROKA, Poland
Dимo STOILOV, Bulgaria
Stoyko STOYKOV, Bulgaria
Rima TAMUSHIUNIENE, Lithuania
Atanaska TENEVA, Bulgaria
Hannes TÖPFER, Germany
Nadege TROUSSIER, France
Boriana TZANEVA, Bulgaria
Sergey VOYTKO, Ukraine
Ivan YATCHEV, Bulgaria
Zahary ZARKOV, Bulgaria
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION STRUCTURE OPTIMIZATION FOR THE BULGARIAN POWER SYSTEM</td>
<td>9</td>
</tr>
<tr>
<td>Dimo Stoilov Konstantin-Kiril Savov, Plamen Tzvetanov</td>
<td></td>
</tr>
<tr>
<td>Vesselina Trashlieva, Kristina Hadzhiyska</td>
<td></td>
</tr>
<tr>
<td>INFRARED ARRAY SENSOR WIRELESS NETWORK</td>
<td>13</td>
</tr>
<tr>
<td>Kalin Dimitrov, Yuliyan Velchev</td>
<td></td>
</tr>
<tr>
<td>SOME ASPECTS FOR THE INTEGRATION OF SENSOR NETWORKS IN CLOUD STRUCTURES</td>
<td>17</td>
</tr>
<tr>
<td>Filip Tzvetanov, Martin Pandurski</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL RESPONSE OF A FRICTIONAL SEISMIC ISOLATOR</td>
<td>21</td>
</tr>
<tr>
<td>Todor Zhelyazov, Karl Debray</td>
<td></td>
</tr>
<tr>
<td>A COMPUTATIONAL APPROACH TO TEACHING THE IS-LM MODEL</td>
<td>25</td>
</tr>
<tr>
<td>Iordan Iordanov, Andrey Vassilev</td>
<td></td>
</tr>
<tr>
<td>VIRTUAL GAMING PLATFORM CUSTOMER EXPERIENCE EVALUATION</td>
<td>28</td>
</tr>
<tr>
<td>Roumiana Ilieva, Kiril Anguelov, Vladislav Lazarov, Violeta Goleshevska</td>
<td></td>
</tr>
<tr>
<td>A CYNEFIN FRAMEWORK FOR AGILE DECISION MAKING OF AI BOTS</td>
<td>32</td>
</tr>
<tr>
<td>Roumiana Ilieva, Kiril Anguelov, Mario Nikolov</td>
<td></td>
</tr>
<tr>
<td>POSSIBILITIES FOR IMPLEMENTING PRODUCTION "AUTOMATION ISLANDS" IN AN AUTOMATIC PRODUCTION SYSTEM</td>
<td>36</td>
</tr>
<tr>
<td>Pancho Tomov</td>
<td></td>
</tr>
<tr>
<td>MODELING THE VEHICLE TRACTION SYSTEM AND DEVELOPED NEURAL PREDICTIVE CONTROLLER</td>
<td>39</td>
</tr>
<tr>
<td>Bogdan Gilev</td>
<td></td>
</tr>
<tr>
<td>ESTIMATION OF HARD REAL - TIME SYSTEM WORKABILITY</td>
<td>43</td>
</tr>
<tr>
<td>George Popov, Nikolay Brayanov, Alexandar Balevski</td>
<td></td>
</tr>
<tr>
<td>USE OF SYSTEM DIVERSITY AS TOOL FOR IDENTIFICATION</td>
<td>46</td>
</tr>
<tr>
<td>George Popov</td>
<td></td>
</tr>
<tr>
<td>A NONLINEAR MOVING TARGET TRACKING CONTROL OF NONHOLONOMIC WHEELED MOBILE ROBOTS</td>
<td>50</td>
</tr>
<tr>
<td>Plamen Petrov, Veska Georgieva</td>
<td></td>
</tr>
<tr>
<td>SIMULATION OF MARKOV PROCESSES THROUGH CHAINS WITH COMPLEX STATES</td>
<td>54</td>
</tr>
<tr>
<td>George Popov</td>
<td></td>
</tr>
<tr>
<td>IDENTIFICATION OF THE PARAMETERS OF A DUAL-MASS DC ELECTROMECHANICAL SYSTEM USING DAUBECHIES WAVELETS</td>
<td>58</td>
</tr>
<tr>
<td>Reneta Parvanova, Mariyana Todorova</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT OF SPEECH RECOGNITION ALGORITHM AND LABVIEW MODEL FOR VOICE COMMANDS CONTROL OF MOBILE ROBOT MOTION</td>
<td>62</td>
</tr>
<tr>
<td>Snejana Pleshkova, Zahari Zahariev, Alexander Bekiarski</td>
<td></td>
</tr>
<tr>
<td>OBTAINING OF COPPER COATINGS ON DIELECTRICS FROM NON-FORMALDEHYDE ELECTROLESS COPPER PLATING BATH</td>
<td>66</td>
</tr>
<tr>
<td>Mihaela Georgieva</td>
<td></td>
</tr>
</tbody>
</table>
EFFECT OF TREATMENT IN COPPER (II) ELECTROLYTE ON THE STRUCTURE OF A COPPER/ALUMINA NANOCOMPOSITE
Vesselinil Milusheva, Tobia Karagyozov, Boriana Tzaneva, Valentin Videkov 69

CHEMICAL AND ELECTROCHEMICAL GROWTH OF HYDROXYAPATITE ON 3D MACHINED TITANIUM ALLOY
Boriana Tzaneva, Georgi Todorov, Rayna Dimitrova 73

RESEARCH AND EVALUATION OF FACTORS AND SUB-FACTORS THAT AFFECT ON THE TIMELINESS AND RELIABILITY OF DELIVERIES AND THEIR IMPORTANCE FOR THE EFFICIENCY OF THE LOGISTIC PROCESSES
Kiril Anguelov, Rossitza Kenova 77

CULTURAL AND CREATIVE BUSINESS THROUGH INVESTMENT PLAN FOR EUROPE
Miglena Angelova, Tsvetana Stoyanovova 82

SURVEY OF HOW PROCESS MODELING WORKS IN THE BULGARIAN ORGANIZATIONS
Valentina Nikolova-Alexieva, Atanaska Teneva, Petja Yordanova 86

MAINTAINING STEADY COST PROJECTION ON WASTEWATER ENGINEERING PROJECTS IN BULGARIA
Atanaska Teneva, Valentina Nikolova-Alexieva, Atanaska Tuntova 90

CONCEPT MODEL FOR ASSESSMENT OF THE ECONOMIC SECURITY LEVEL IN FOOD INDUSTRY ENTERPRISES
Atanaska Teneva, Valentina Nikolova-Alexieva, Ana Yaneva 94

E-COMMERCE AS A POSSIBILITY FOR THE HORECA SECTOR IN THE PLOVDIV REGION
Georgi Toskov, Ana Yaneva, Iva Bichurova 97

CONSUMER'S BEHAVIOR OF RESTAURANT SELECTION
Hafize Fidan, Atanaska Teneva, Stanko Stankov, Eva Dimitrova 100

IMPACT OF INTERNAL FACTORS ON THE COMPETITIVENESS OF BUSINESS ORGANIZATIONS
Tsvetana Stoyanovova, Miglena Angelova 103

CONDITIONS FOR APPLYING THE PRINCIPLES OF TOTAL QUALITY MANAGEMENT TO THE REQUIREMENTS OF THE FOURTH INDUSTRIAL REVOLUTION
Ina Nikolova-Jahn 106

BIG DATA FOR BUSINESS - CHALLENGES AND OPPORTUNITIES FOR THE BULGARIAN ECONOMY
Mina Daskalova 110

TECHNICAL AND ECONOMIC JUSTIFICATION OF THE FUNCTIONS AND THEIR GRAPHIC REPRESENTATION OF A HIGH-TECH ENTERPRISE
Jordanka Angelova, Vasil Kuzmov 114

FACTORS AFFECTING BUSINESS PROCESS MANAGEMENT IN THE BULGARIAN ENTERPRISES TO ACHIEVE SUSTAINABLE DEVELOPMENT
Toni Mihova, Valentina Nikolova-Alexieva, Mina Angelova 118

DYNAMICS IN THE THEORY AND PRACTICE OF THE STRATEGIC MANAGEMENT
Rumen Marinov 122

DIGITIZATION OF EDUCATION IN THE FIELD OF SECURITY
Vanya Dimitrova 124

ASPECTS OF TRAINING IN THE FIELD OF OPERATIONS MANAGEMENT WITH RESPECT TO INDUSTRY 4.0
Nataliya Koleva, Ognyan Andreev 127
MARKING 5.0. TRANSACTIONS OF ARTIFICIAL INTELLIGENCE SYSTEMS IN THE DIGITAL ENVIRONMENT
Mihail Draganov, Miglena Panicharova, Neziha Madzhirova

THE CONCEPT OF MANAGEMENT OF THE DEVELOPMENT OF NATIONAL INNOVATION SYSTEMS
Anna Kniazevych, Serhii Kraichuk, Natalia Ostapchuk

DEVELOPMENT OF CONTROL STRATEGY FOR CHARGING ELECTRIC VEHICLES IN MICRO AND NANOGRID
Gergana Vacheva, Bogdan Gilev, Nikolay Hinov

EVALUATION AND VERIFICATION OF SERIES RESONANT CONVERTER WITH TRANSFORMER OPERATING REGIMES
Nikolay Hinov, Tsveti Hranov

NUMERICAL MODELING OF THE ELECTROMAGNETIC SYSTEM IN AN INDUCTION BRAZING SYSTEM
Dragomir Grozdanov, Nikolay Hinov, Hristo Tarnev

MODELING OF SERIES RESONANT DC-DC POWER CONVERTERS
Nikolay Hinov, Bogdan Gilev

CONJUGATE HEAT TRANSFER ANALYSIS USING 3D FEM MODEL OF AN OIL-IMMERSED DISTRIBUTION TRANSFORMER
Ivan Hadzhiev, Ivan Yatchev, Emil Mechkov

3D MODELING OF THE MAGNETOSTATIC FIELD IN SEPARATION APPARATUS
Tatyana Dimova, Maik Streblau, Bohos Aprahamian

INVESTIGATION OF ELECTRODYNAMIC FORCES IN A FLAT INDUCTION SYSTEM
Ilonka Lilyanova, Mariya Marinova, Marin Marinov

INVESTIGATION OF THE BATTERY LIFE VERSUS THE BROADCAST INTERVAL FOR ABEACON_46BF
Pavel Andreev

THEORETICAL AND EXPERIMENTAL STUDY OF INTERLEAVED NON-INVERTING BUCK-BOOST CONVERTER FOR RES
Zahari Zarkov, Ivan Bachev, Ludmil Stoyanov, Vladimir Lazarov

METHODS FOR ENERGY PRODUCTION ESTIMATION FROM PHOTOVOLTAIC PLANTS: REVIEW AND APPLICATION
Ludmil Stoyanov, Zahari Zarkov, Iva Draganovska, Vladimir Lazarov

REDDUCING THE ENVIRONMENTAL IMPACT OF ELECTRICAL INSTALLATIONS
Kamen Seymenliyski, Eldar Zaerov, Radoslav Simionev, Silviya Letskovska

ENVIRONMENTAL INFLUENCE ON RENEWABLE SOURCES PRODUCTIVITY
Silviya Letskovska, Kamen Seymenliyski, Eldar Zaerov, Stefan Mikhov

MATLAB MODELING OF REAL GRID FOR FAULT ANALYSIS
Vikas Gaikwad, Angel Tcolov, Ivan Yatchev

MODELLING OF UNDERGROUND CABLES
Dimitar Georgiev, Plamen Stanchev, Yoncho Kamenov, Yulian Rangelov

DEVELOPMENT OF SIMULATION MODELS FOR INTERACTIVE AUDIOVISUAL CONTROL OF STUDENTS IN THE E-LEARNING ENVIRONMENT
Salma Boumiza, Snejana Pleshkova, Alexander Bekierski, Dalila Souilem
MODELLING AND STUDYING OF CLOUD INFRASTRUCTURES 262
Ivan Nedyalkov, Alexey Stefanov, Georgi Georgiev

FACIAL IDENTIFICATION AND MACRO EXPRESSION RECOGNITION WITH A NEW TEXTURAL FEATURING APPROACH 266
Joseph Ronsin, Hua Lu, Kidiyo Kpalma, Mingqiang Yang

PROSTATE SEGMENTATION IN ULTRASOUND IMAGES USING HYBRID METHOD 270
Veska Georgieva, Antonia Mihaylova, Plamen Petrov

A MULTISTAGE APPROACH FOR DETECTION OF OBJECTS WITH RECTANGULAR FORMS 274
Veska Georgieva, Plamen Petrov, Lubomir Dimitrov

SECURE AUDIO INFORMATION TRANSMISSION WITH ENCRYPTION ALGORITHMS IN PKI 277
Snejana Pleshkova, Dimitar Kinanev, Alexander Bekiarski

CHARACTERIZATION OF THE TRAFFIC IN IP-BASED COMMUNICATION NETWORKS 281
Ivan Nedyalkov, Alexey Stefanov, Georgi Georgiev

AUTHOR INDEX 285
Students’ Unsupervised Experience in Eassessment With the Tesla System

Malinka Ivanova
Technical University of Sofia, College of Energy and Electronics, Sofia, Bulgaria,
email: m_ivanova@tu-sofia.bg,

Roumiana Ilieva
Technical University of Sofia, Department of Economics, Industrial Engineering and Management, Sofia, Bulgaria,
email: rilieva@tu-sofia.bg

Abstract The concept of eAssessment with the adaptive and trust-based TeSLA system is introduced. The TeSLA system is an innovative product developed according to the TeSLA project supported by the European Commission in the scope of the H2020 programme. Students’ unsupervised experience in the eAssessment framework during the performed third pilot in the course Electronic Servicing in Public Administration is examined and evaluated through applying the fuzzy approach and the shortest path method. Analysis of the results, as well as relevant discussion and conclusions are proposed. The findings point out the possible paths in the eAssessment environment, consisting of Moodle Learning Management System and the TeSLA system, under unsupervised conditions for achieving rich experience by students. Also, the shortest path is obtained and discussed.

Keywords Students’ unsupervised experience, eAssessment, TeSLA, fuzzy approach, the shortest path

I. INTRODUCTION

eAssessment is a process important for teachers as well as for students contributing to understanding the level of their knowledge and achieved skills during a course [1]. Assessment of unsupervised tasks is not so well explored topic by educators and researchers and evidence for this fact is the small number of published papers. For example, Kibble reports the findings of an experiment for usage online unsupervised quizzes in formative assessment [2]. The author concludes that formative online quizzes lead to better results in summative examination. Unsupervised assessment is related to the self-regulated learning, but the terms are not the same. Self-regulated learners initiate and direct their own learning process without the support of teachers or anybody else [3], [4]. Also, unsupervised assessment is related to the personalized learning which is described as learning with self-designed learning paths and activities by students according to their learning needs and interests [5]. In spite of them, supervised learners perform tasks designed especially for them by teachers to facilitate their learning. In this case, the students only have possibilities to manage the tasks performance in their own way without the teachers’ support. The assessment activities designed for conducting in unsupervised conditions have to be prepared in instructive and clear manner in order to facilitate students. Also, the assessment environment has to propose functionality that will guarantee examinees a fair, transparent and robust assessment process during task conduction, submission and feedback delivery. In this work an experiment with the TeSLA system is described concerning the gained experience by students in their assessments tasks performance without teachers’ supervision. The TeSLA system is an adaptive and trust-based solution for eAssessment in online and blended-learning environment. It is developed in the scope of the TeSLA project, funded by the European Commission, according to the H2020 programme [6]. The TeSLA system is implemented in the form of plugins added to the Moodle Learning Management System (LMS) and proposes five instruments: three instruments for students’ authentication – instrument for face recognition (FR), voice recognition (VR), keystroke dynamics (KD) and two instruments for authorship verification – forensic analysis (FA) and plagiarism (PL). Thus, the assessment tasks are designed by teachers in Moodle LMS typically as assignments and quizzes with possibilities one or more TeSLA instruments to each assessment activity to be added. The unsupervised students conduct assessment tasks in their own way – with their speed, in time and place suitable for them. They can choose what kind of additional learning resources will explore to finish the tasks. Different students perform their unsupervised assessment activities with different efficacy and quality. It depends of student’s profile - existing and achieved competences, learning history and background, students learning style, motivation and personality. Despite the students are directed through the instructive guidance prepared by the teacher in assistance of their formal learning, always unsupervision is accompanied by ambiguity and uncertainty related to the task management, performance and gained experience.

The aim of the paper is to present the findings obtained during the third pilot of the TeSLA project concerning the gained unsupervised experience by students. It is evaluated thought utilization of fuzzy apparatus and the shortest path method. The results are analysed and discussed. An assessment model for unsupervised students is proposed.

II. THE PERFORMED PILOT AND STUDENTS’ EXPERIENCE

In the course Electronic Servicing in Public Administration (ESPA) two assessment activities were designed to be conducted by students without teachers’ guidance through utilization of the TeSLA system. The first one is focused on preparation of an explorative report on individually assigned topic with aim to contribute to the development of the following students’ competences: to be able to explore, summarize and analyse materials and to be able to prepare unique written report. According to this aim the TeSLA instrument for plagiarism check was added to the assessment task to confirm the original nature of the prepared report. The second involved instrument was for student’s authentication: face recognition that had to verify the student’s identity at the time of report submission. Other assessment task was designed to develop the students’
competences: analytical thinking and self-organization. It was individually prepared by students in the form of a written report and their authorship work was checked thought the TeSLA instrument FA that contributes to confirmation or not the uniqueness of the student’s writing style. The second applied instrument for this assessment activity was FR for student’s authentication. Both assessment activities contributed to the final mark formation.

In literature, the students’ experience is described in a wide variety of ways. Coates, Kelly and Naylor summarize the new perspectives on the students’ experience through “nine qualities model” [7]. These nine qualities form three groups: (1) students’ views group with three qualities: educational value for the student, belonging to the academic community, and identity formation through achievement of meta competences like to be able more responsible citizens, (2) students’ outcomes group with four qualities: discovery experience through research, new understanding formation, gathering new ideas and skills, emotional engagement, social network creation; achievement related to the good marks, passed units and course, reached knowledge and skills; connection through building academic network inside and outside the university; opportunity for academic and professional development, (3) students support group with two qualities: enabled experience, giving possibilities to students for achievement of competences of self-regulation and meta-cognition; personalized experience according to the personal learning needs and personal characteristics. Baker connects students’ experience to the gained competences through their participation in competency-based programs [8]. The achieved results, including experience are measured through gained competences that will support students in their future career. Cox points out the importance of physical and virtual university spaces for students’ gained experience during their learning and influence of spaces on socialization, surface engagement, hospitality, criticality and solidarity [9]. Strydom and Mentz discuss the students’ experience from the perspective of the students engagement [10]. They describe the student engagement through two components: time and effort for task performance and applying effective educational practice to stimulate students success.

In the scope of this work, the students unsupervised experience is related to: the design of assessment activities, features of the eAssessment environment, existing and gained competences, assessment activities performance, achieved results, assessment paths.

III. EVALUATION OF THE STUDENTS’ UNSUPERVISED EXPERIENCE

Students’ unsupervised experience in the eAssessment environment in Technical University of Sofia, consisting of Moodle LMS and the TeSLA system, is characterized with negative and positive points, because of existing uncertainty and blurriness from teachers’ point of view. This uncertainty and blurriness concerning the students’ unsupervised experience is analysed taking into account the following criteria: existing students’ competences, possibilities for students to receive new knowledge, enrolment performance, assessment activities performance, access to knowledge resources, usage of available instructions for working with the TeSLA system, TeSLA system interface, Moodle functionality. To evaluate the gained students’ experience without teachers’ guidance, the fuzzy approach and the shortest path method is applied [11]. The path net is constructed and presented on Figure 1, where each edge is one criterion. The most used arcs are visualized. Other arcs are not shown in order to keep the model not so complex. The aim is the shortest assessment path from student’s starting statement to student’s gained experience to be found that will outline the important criteria for the effective assessment path and rich experience gaining during the TeSLA pilot and it will be a base for development of an assessment model for unsupervised students.

Fig.1. Path net

<table>
<thead>
<tr>
<th>Arc</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2, 3)</td>
</tr>
<tr>
<td>(2,4)</td>
<td>(3,4, 5)</td>
</tr>
<tr>
<td>(4,1)</td>
<td>(6,7, 8)</td>
</tr>
<tr>
<td>(4,8)</td>
<td>(4,5, 6)</td>
</tr>
<tr>
<td>(4,1)</td>
<td>(4,5, 6)</td>
</tr>
<tr>
<td>(10, 8)</td>
<td>(4,5, 6)</td>
</tr>
</tbody>
</table>

The applied algorithm is presented on Figure 2, following the described procedures in [11].

<table>
<thead>
<tr>
<th>Arc</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2, 3)</td>
</tr>
<tr>
<td>(1,3)</td>
<td>(1,2, 3)</td>
</tr>
<tr>
<td>(2,6)</td>
<td>(3,4, 5)</td>
</tr>
<tr>
<td>(9,1)</td>
<td>(4,5, 6)</td>
</tr>
<tr>
<td>(9,5)</td>
<td>(1,2, 3)</td>
</tr>
<tr>
<td>(5,6)</td>
<td>(4,5, 6)</td>
</tr>
<tr>
<td>(6,1)</td>
<td>(5,6, 7)</td>
</tr>
<tr>
<td>(5,3)</td>
<td>(1,2, 3)</td>
</tr>
</tbody>
</table>

Table 1. Length of arcs in fuzzy numbers
Five paths with length $L_i(a,b,c)$, $i=1,2,...,n$ are chosen as most possible for passing by unsupervised students and the minimal path $L_{\text{min}}(a',b',c')$ is obtained:

$P_1:1-8-9-5-3-2-6-11; L_1=(13,20,27); P_2:1-2-3-8-9-5-6-11; L_2=(16,23,30); P_3:1-2-4-8-9-5-6-11; L_3=(19,26,33); P_4:1-2-4-10-8-9-5-6-11; L_4=(19,31,39); P_5:1-8-9-5-6-3-2-11; L_5=(15,22,30).$

The fuzzy numbers are calculated according to the following mathematical dependencies:

$$a = \min(a, a')$$
$$b = \begin{cases} b, & \text{if } b \leq a' \\ \frac{(b-b')-(a-a')}{(b+b')-(a+a')}, & \text{if } b > a' \end{cases}$$
$$c = \min(c, b')$$

Then, $L_{\text{min}}=(13,7.18,23)$ is obtained.

The Euclidean distance is calculated between the current path length and L_{min} applying the equation:

$$d(L_i, L_{\text{min}}) = \sqrt{(a_i - a_{\text{min}})^2 + (b_i - b_{\text{min}})^2 + (c_i - c_{\text{min}})^2}.$$

The received distances have the following crisp values:

$(L_1,L_{\text{min}})=13.43$; $d(L_2,L_{\text{min}})=17.56$; $d(L_3,L_{\text{min}})=22.71$; $d(L_4,L_{\text{min}})=29.32$; $d(L_5,L_{\text{min}})=16.51$.

It can be seen that the path P_1 is the shortest path, because it has the smallest value of the Euclidean distance in comparison to the rest calculated distances. It is a possible solution for unsupervised students who possess competences to perform the enrolment and assessment activities in eAssessment environment, consisting of Moodle LMS and the TeSLA system. In other cases, the students’ path from the starting point to the gained experience is longer and it depends on the needed knowledge, required instructions, performance effectiveness, design of assessment activities.

On Figure 3 is presented the developed model for assessment of unsupervised students. It summarizes the literature review, performed analysis and authors experience during the third pilot of the TeSLA project. The gained students’ experience we could classify in three groups:
IV. CONCLUSION

The paper summarizes and analyses the findings obtained during the third pilot of the TeSLA project related to the gained unsupervised experience by students. Two assessment tasks were designed with aim to be performed at home by students without teacher’s support. The results show that the detailed instructions related to Moodle and the TeSLA system functionality as well as the clear instructive material were in assistance of students. Among the most common difficulties was the lack of sufficient knowledge and understanding the characteristics of the system as well as the lack of required competences that led to the longer assessment paths. Anyway, all students-participants successfully performed their unsupervised assessment activities.

V. ACKNOWLEDGEMENT

This work is supported by H2020-ICT-2015/H2020-ICT-2015 TeSLA project “An Adaptive Trust-based e-assessment System for Learning”, Number 688520.

REFERENCES

[6]. The TeSLA project web site: http://tesla-project.eu/

