Volume 6 Issue 04

<table>
<thead>
<tr>
<th>Title</th>
<th>STUDY ON HARDNESS AND WEAR RESISTANCE OF LAYERS OVERLAYED USING ELECTRODES WITH NANO-MODIFIED COATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>PLAMEN TASHIEV, HRISTO KONDOR, ELISAVETA TASHIEVA, MARA KANEVA</td>
</tr>
<tr>
<td>Abstract</td>
<td>Developed is innovative manufacture technology for electrodes nano-modified with TiN, A203, SC, TiCN+C, TiN+Cr, and TiCN purposed for weld overlay of wear resistant surface layers. Test samples are caddled using the manufactured electrodes. Vickers hardness and wear resistance of the overlayd metal are measured</td>
</tr>
<tr>
<td>Keywords</td>
<td>electrode, manual arc welding, nano-modifier, weld overlay, overlayed layer, Vickers hardness, wear resistance</td>
</tr>
</tbody>
</table>

[Click here for full Text](#)

<table>
<thead>
<tr>
<th>Title</th>
<th>PROCESSING OF LOW-CYCLE FATIGUE TESTS DATA ON A BASE OF KINETIC FATIGUE THEORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>SYZRANTSEV V.N., SYZRANTSEVA K.V., ILINSKH V.N.</td>
</tr>
<tr>
<td>Abstract</td>
<td>To describe the results of tests of samples destruction in a field of low-cycle deforming authors use mathematical model developed in the kinetic theory of mechanical fatigue. Two additional parameters were included in developed model. First parameter characterizes the initial damage of part materal, which exists before cyclic deforming of part. Second parameter describes the part resistance against the growth of fatigue cracks. Proposed earlier methods of experimental determination of these parameters values in real operational tests of parts do not allow to obtain required information. The paper considers the task of calculation of these parameters based on results of sample's longevity tests and developed mathematical model.</td>
</tr>
<tr>
<td>Keywords</td>
<td>tensile strength, cyclic deforming, low-cycle fatigue, damages accumulation</td>
</tr>
</tbody>
</table>

[Click here for full Text](#)
<table>
<thead>
<tr>
<th>Title</th>
<th>EQUIVALENCE AMONG VISCOELASTIC SPRING-POT GENERAL PROCESSES AND A PURE VISCOS NEWTONIAN SYSTEM OBSERVED ON A TIME SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>LUCIANO BARBANTI, BERERICE DAMASCENO</td>
</tr>
<tr>
<td>Abstract</td>
<td>The use of fractional calculus when modeling phenomena frequently suggests several questions concerning the deepest parts of the physical laws involved in. Here we will be dealing with one instance of such situation. We will be showing that a very large class of viscoelastic systems are equivalent to a pure viscous (Newtonian) process observed in a discrete time scale.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Spring-pot, fractional derivative, derivative on time scales, Hookean elasticity, Newtonian pure viscosity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>SPRING-POT, FRACTIONAL DERIVATIVE, DERIVATIVE ON TIME SCALES, HOOKEAN ELASTICITY, NEWTONIAN PURE VISCOSITY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>ITAM, A. ESSIEN AND INYANG, D. OKON</td>
</tr>
<tr>
<td>Abstract</td>
<td>Granulometry and pebble morphometry was carried out in the studying of depositional environment of Awi Sandstone of the Calabar Plain. Granulometric analysis of 15 samples show the formation has a graphic mean (M2) of 0.897, average sorting coefficient (σ1) of 1.317, Skewness (Sk) is positively skewed and kurtosis (Kg), ranges from platykurtic to leptokurtic ranges. Pebble morphometric analysis of the conglomerates (360 pebbles) from 10 locations showed that the mean values of various morphometric ranges as follows: flatness ratio (FR = 0.52-0.59), ...</td>
</tr>
<tr>
<td>Keywords</td>
<td>Granulometry, pebble morphometry, Awi Sandstone, bivariate plots, environment of deposition</td>
</tr>
</tbody>
</table>
FORMULATION AND EVALUATION OF FAST DISSOLVING ORAL FILMS OF METOPROLOL SUCINATE

Author: DR. D. NAGENDRAKUMAR, KESHAVSHETTI GC, PRATIBHA MOGALE, SWATTI SWAMI*, HARSHANAND SWAMI

Source: International Journal of Engineering and Applied sciences pp 28 - 38 Vol 06. No. 04, 2015

Abstract: Fast dissolving oral films are useful in patients such as paediatric, geriatric, bedridden or developmentally disabled who face difficulty in swallowing conventional tablets or capsules and liquid orals or syrups leading to ineffective therapy. The delivery system consists of a very thin oral strip, which is simply placed on the patient’s tongue or any oral mucosal tissue, instantly wet by saliva the film rapidly hydrates and adheres onto the site of application. ...

Keywords: IPMC E-5, HEC, Oral Films, Metoprolol Succinate, Solvent Casting Method

CHARACTERIZATION OF MATERIALS FROM ABA WASTE DUMPSITES

Author: UKPONG, E. C; UDO, E. A., AND UMOH, I.C.

Source: International Journal of Engineering and Applied sciences pp 01 - 10 Vol 06. No. 03, 2015

Abstract: The leachate quality from two major dumpsites in Aba (Umuigwe Ossioa and Ogbor) was analysed for its physiochemical parameters. Standard methods for analysis of physiochemical parameters were used in this assessment. It was realized that leachate from both dumpsites had high Biological Oxygen Demand (BOD) of (65mg/l), ammonia (32.15mg/l), sulphates

Keywords: Leachate, dumpsites, Umuigwe Ossioa, Ogbor, BOD Concentration.
International Journal of Engineering and Applied Sciences

International Journal of Engineering and Applied Sciences (EAAS) is dedicated to integrating publications that have expansion and research outcomes within the extensive spectrum of subfields in the applied sciences and engineering. The journal is focusing scientific study concerning to various disciplines of the applied sciences and engineering fields from hypothetical, applied and analytical study to practical inferences and academic or quantifiable discussion envisioned for both academic and business progress. EAAS is a peer review open access journal and objects to deliver scientific information to be readers in the field of applied sciences and engineering.

EAAS proposed audience is encompassed of scientists, researchers, professionals. EAAS welcomes them all to publish their study in their specific area.
Editorial Board

EAAS comprehends the status of research work of authors, so it is highly desirable to uphold professional and highly constructive association with reviewers and editorial team, who help us to evaluate the manuscripts and give the fair opinion to authors. We select only highly competent people in our editorial team because highest standard of research publication can only be achieved by help of those who have passion for conducting and reviewing research.

Editorial Board (List Updation Is in process)

1. Prof. Dr. Charles Christopher Sorrell, School of Material Sciences and Engineering, University of New South Wales, Sydney, Australia
2. Dr. Ebru Aydeniz, Department of Architecture, Yasar University, Turkey
3. Dr. Badam Singh, Department of Applied Mathematics, Indian School of Mines, India
4. Dr. Ideisan Ibrahim, Department of Chemistry, University Of Sharjah, UAE
5. Dr. Sanjeev Kumar, Department of Electronics Engineering, Indian School of Mines, India
6. Dr. Bilal A. Akash, Department of Mechanical Engineering, Dhofar University, Oman
7. Dr. Prasanta K. Jana, IEEE Senior Member, USA
8. Dr. Hari Om, Department of Computer Science and Engineering, Indian School of Mines, India
9. Dr. Yalin Kilic TUREL, Department of Computer Education and Instructional Technologies, Firat University, Turkey
10. Dr. Shiv Datt Kumar, Department of Mathematics, Motilal Nehru National Institute of Technology, India
11. Dr. Mohd Idrus Mohd Masirin, Faculty of Civil and Environmental Engineering, Universiti of Tun Hussein Onn Malaysia, Malaysia
12. Dr. Murat Egi, Department of Computer Engineering, University Galatasaray, Turkey
13. Dr. Khalid Farhod Chasib, Department of Chemical Engineering, University Of Technology, Iraq
14. Dr. Leila Ismail, College of Information Technology, United Arab Emirates University, UAE
15. Dr. Saranjit Singh, School of Mechanical Engineering, KIIT University, India
16. Assoc. Prof. Dr. Zuhailawati Hussain, School of Materials & Minerals Resources Engineering, Universiti Sains Malaysia, Malaysia
17. Dr. Hakan Cetinel, Department of Mechanical Engineering, Celal Bayar University, Turkey
18. Dr. Lalit Kumar, Department of Mathematics, university of Delhi, India
19. Dr. Masoud Hajarian, Department of Mathematics, Shahid Beheshti University, Iran
20. Dr. Reza Shariatinasab, Department of Electrical and Computer Engineering, University of Birjand, Iran.
21. Dr. Abdul Mutalib leman, Faculty of Engineering and Technology, Universiti Tun Hussein Onn, Malaysia
22. Dr. Jyotindra C. Prajapati, Department of Mathematical Sciences, Faculty of Applied Sciences, Charotar University of Science and Technology, India

23. Dr. Mohammad Mehdi Rashidi, Department of Mechnical Engineering, Bu-Ali Sina University, Iran

24. Dr. Tamer Medhat Mohammad Ibrahim, Electrical Engineering Department, faculty of Engineering, Kafrelsheikh University, Egypt

25. Dr. Mohammad Hadi Deghhani, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Iran

26. Dr. Hardeep Singh, Department of Electronics and Communication Department, Indo Global College of Engineering, India

27. Dr. Atmani Hassan, Director of Organization Entraide Nationale, Morocco

28. Dr. Nguyen Huy Tuan, Department of Mathematics and Informatics, University of Natural Sciences, Vietnam

29. Dr. Habibolla Latifizadeh, Department of Mathematics, Shiraz University of Technology, Iran

30. Dr. TAN CHEE FAI, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Malaysia

31. Dr. Venugopal Thottempudi, Department of Chemistry, University of Idaho, USA

32. Dr. T.V Surya Naryana, Department of Electronics and Computer Engineering, K.L University, India

33. Dr. Dae San Kim, Department of Maths, Sogang University, Korea

34. Dr. Ching-Sung Wang, Electrical Engineering, Oriental Institute of Technology, Taiwan

35. Dr. Krastanov Krasimiri, Department of Material Handling and Construction Machines, Todor Kableshkov University of Transport Education, Bulgaria

36. Dr. Abdelhalim Ebaid, Department of Maths, University of Tabuk, Saudi Arabia

37. Dr. Sunil Kumar, Department of Maths, National Institute of Technology, India

38. Dr. Taha Mattar, Steel Technology Department, Central Metallurgical R & D Institute, Egypt

39. Dr. K.V.L.N.Acharyulu, Department of Maths, Bapatla Engineering, India

40. Dr. Taghreed Hashim Al-Noor, Department of Chemistry, University of Baghdad, Iraq

41. Dr. Kosa Golici, Faculty of Construction Management, University Union Nikola Tesla, Serbia.

42. Dr. Mohammad Reza Alizadeh, Department of Agricultural Engineering (Head), The Rice Research Institute of Iran (RRII), Iran.

43. Dr. Bensafi Abd-El-Hamid, Department of Chemistry and Physics, Faculty of Sciences, Abou Bekr Belkaid University of Tlemcen, Algeria

44. Dr. Vishnu Narayan Mishra, Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, India

45. Dr. Fadhl M. Al-Akwa, Biomedical Engineering, University of Science and Technology, Sana’a, Yemen

46. Dr. Mohd Zainal Abidin Ab Kadir, Faculty of Engineering, Universiti Putra Malaysia (UPM), Malaysia
47. **Dr. Jung-Chang Wang**, Department of Marine Engineering, National Taiwan Ocean University, Taiwan

48. **Dr. Hesham G. Ibrahim**, Faculty of Marine Resources Al-Asmaya Islamic University, Zliten City, Libya

49. **Dr. Mohammad Abdel Samei’ Tabiei**, Dep. Of Agricultural Economics and Agribusiness, Faculty of Agriculture, The University of Jordan, Jordan.

50. **Dr. Sivakumar Sukumaran**, Agronomy: Plant Breeding & Genetics, Kansas State University, USA.

51. **Dr. Arda YILDIRIM**, Faculty of Agriculture, Department of Animal Science, Gaziosmanpassa University, Turkey.

52. **Dr. Chee-Ming Chan**, infrastructure engineering and geomatic, Universiti Tun Hussein Onn Malaysia, Malaysia.

53. **Dr (Eng). G.G. Tushara Chaminda**, Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, SRI LANKA.

54. **Dr. Sylwia Myszograj**, Faculty of Civil and Environmental Engineering, University of Zielona Gora, Poland.
Abstracting and Indexing

1- Directory of Open Access Journals (DOAJ)
2- OpenJ-Gate
3- Academic Journals Database
4- ScientificCommons
5- Microsoft Academic Search
6- Academic Index
7- CiteSeerX
8- RefSeek
9- ISEEK
10- Socol@r
11- ResearchGATE
12- Libsearch
13- Bielefeld Academic Search Engine (BASE)
14- Google Scholar
15- Indexed in Electronic Journals Library
16- Indexed in: DRJI

Directory of Research Journals Indexing
STUDY ON HARDNESS AND WEAR RESISTANCE OF LAYERS OVERLAYED USING ELECTRODES WITH NANO-MODIFIED COATING

PLAMEN TASHEV, HRISTO KONDOV, ELISAVETA TASHEVA, MARA KANDEVA

Institute of Metal Sciences, Equipment and Technologies "Acad. Angel Balevski" with Hydro-aerodynamics Centre 63, Shipchenski prohod, 1574 Sofia, Bulgaria
Higher School of Transport T. Kableshkov, Bulgaria 1574, Sofia, 158Geo Milev
Technical University of Sofia, Sofia 1000, 8 Kl. Ohridski Blvd

ABSTRACT

Developed is innovative manufacture technology for electrodes nano-modified with TiN, Al2O3, SiC, TiCN+C, TiN+Cr, and TiCN purposed for weld overlay of wear resistant surface layers. Test samples are cladded using the manufactured electrodes. Vickers hardness and wear resistance of the overlay metal are measured. The resulting variations of hardness and wear resistance are analyzed in relation with the nature of nano-modifier used. The application area of nano-modified electrodes is for both preventive and repair weld overlay.

Key words: electrode, manual arc welding, nano-modifier, weld overlay, overlayed layer, Vickers hardness, wear resistance

INTRODUCTION

Arc welding is a technology appropriate to increase the wear resistance of surfaces of parts and tools. The weld overlay can be purposed for prevention or repair. The process is especially efficient when different modifying additives are introduced in the weld overlay metal. The additives can be introduced via the coating of the welding electrodes.

The recent study presents an innovative technology for manufacture of electrodes for arc manual welding containing different types of nano-particles (modifiers) in the coating. Herein are also presented the results from the testing of hardness and wear resistance of cladings overlayed using nano-modified electrodes.

The review of the reference literature available reveals numerous studies on the effect of titanium-containing nano-particles on the technical characteristics of the metal after weld overlay. Most studies use titanium dioxide, titanium, titanium carbonitride [1], and silicon carbide [2] as nano-modifiers. It is found that the increased quantities of titanium-containing inclusions lead to changes in the micro-structure of the metal thus improving its mechanical properties (hardness, wear resistance) [3]. The increased concentration of titanium in the weld overlayed metal increases the concentration of titanium in these inclusions too. [4]. Examined is the effect of titanium [5] on the properties of the weld overlayed metal at 1.4% and 2% levels of manganese. The mechanical properties of the weld overlayed metal are improved [6-10], especially at medium concentrations of nano-particles, which is explained with the increased level of acicular ferrite and the finer microstructure.

The significantly improved mechanical properties, such as high hardness and toughness, are probably due to the fine grain microstructure and redistribution of internal stresses resulting from the added substances in the form of nano-powders with predominant particle size distribution measuring several tens of nanometers [11,12].
DEVELOPMENT AND MANUFACTURE OF NANO-MODIFIED ELECTRODES FOR WELD OVERLAY

The nano-modified electrodes for weld overlay are developed based on electrode type IZA-E300. It belongs to the group of electrodes for weld overlay of layers with higher requirements for wear resistance. [13]

Materials for the coating of the electrodes delivered are graded according to the technical requirements for each of them individually. Preliminary chemical analysis and granulometric analyses are carried out. Used is potassium water glass with content as per the requirements of the technical specification. Selected is electrode wire with diameter Ø3.25 and length 450mm.

The materials are dosed in accordance with the formulation for manufacture of electrodes type IZA-E300. Nano-materials are input at a certain point in the implementation of the technology, taking into account the specific particle size of material.

The dry homogenization is carried out manually with a blender. The nano-materials for each sample are added immediately before blending. The wet homogenization is carried out in "S" blender with volume up 2.5 kg.

First, the sample coating is dry blended, and then water glass is added in trickle. The coating thus prepared is poured into a suitable container and fed to the extrusion press.

The technological extrusion press (Fig.1) is set for electrodes with dimensions Ø3.25/450 mm.

The extruded electrodes are passed through the trimming device. The concentricity of the coating is checked using a tool that is calibrated for the particular diameter. The first and the last electrode are removed because since their coating is usually incomplete or uneven (Fig. 2).

The ready electrodes are arranged on grids and are dried in air and in drying furnace.

The classification of nano-modified electrodes according to the amount and the type of nano-modifier is shown in Table 1.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Nano modifier</th>
<th>Quantity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reference electrode (IZA-E300)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>TiN</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Al₂O₃</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>SiC</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>TiCN+C (coated with carbon)</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>TiN+Cr (coated with chromium)</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>TiN</td>
<td>A/2</td>
</tr>
<tr>
<td>8</td>
<td>TiCN</td>
<td>A/2</td>
</tr>
<tr>
<td>9</td>
<td>Al₂O₃</td>
<td>A/2</td>
</tr>
<tr>
<td>10</td>
<td>SiC</td>
<td>A/2</td>
</tr>
<tr>
<td>11</td>
<td>TiN+Cr (coated with chromium)</td>
<td>A/2</td>
</tr>
</tbody>
</table>

where A is the basic quantity of nano-modifier used.
EXPERIMENTAL STUDY OF LAYERS WELD OVERLAYD USING NANO MODIFIED ELECTRODES

The characteristics of the experimental nano-modified electrodes are assessed on steel S 235JR plates with dimensions 250x400x20mm (according to Specification ISO/DIS 15614-7 for weld overlay) with three-layer weld overlay cladding.

Assessment of hardness of the weld overlayed metal

After weld overlay, half of the overlayed surface (OS) is polished, as is shown in Fig. 3.

Fig. 3. Cladded and polished sample

The hardness measurements are carried out according to Vickers HV_{15/15} in eight points as per the diagram shown in Fig. 4.

Fig. 4. Diagram of points for measurement of hardness

The maximum deviations from the measured values are eliminated and the average measured values of hardness are shown in Table 2.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Average value of hardness HV<sub>15/15</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>644.9</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>570.6</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>485.9</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>476.0</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>462.0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>436.1</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>428.1</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>427.9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>412.4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>412.1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>371.1</td>
<td>-10</td>
</tr>
</tbody>
</table>

Estimated is the percentage change of hardness of each sample related to the basic Sample No 1. The highest percentage increase (56%) is achieved in Sample No 11 where the nano-modifier introduced with the coating of the electrode is titanium nitride coated with chromium.

There is a substantial increase of hardness (38%) achieved in Sample No 10 where the nano-modifier introduced is silicon carbide. Most samples (No 9, 8, 3, 7, 6, 2) with nano-modified overlayed surface also exhibit increased hardness in the range from 4% to 18%.

The variations of the average hardness depending on the type of nano-modifier introduced is shown in Fig. 5.

Some experimental results for hardness of samples with weld overlayed nano-modified surfaces are presented in [14]. There is a certain
dissipation of the measured values for hardness. The comprehensive ultrasound examinations proved that there are a lot of imperfections in the weld overlayed layer that can explain the dissipations of the values for hardness, and in the performance of the cladded layer, respectively.

The authors attempted to diagnose the discontinuities using surface wave method similar to that described in [15]. Registered is a significant deviation from the behavior of the wave and is suggested transformation of Rayleigh wave in another type of wave. The subsurface imperfections can inflict local deformations at significant contact interactions. They can cause dissipation of measurement results when the wear of the overlayed layers is assessed in the recent study.

Assessment of wear resistance of the weld overlayed metal

The authors assess the wear resistance of claddings using our own methodology described in [16, 17]. It consists in measurement of the mass wear of samples after a number of wear cycles and estimation of wear intensity and wear resistance for the travelled path of friction. The comparison upon the parameter wear resistance is made under invariable test conditions.

The methodology for testing of wear resistance is based on measuring the integral (total) loss of mass of the test sample at exactly the same conditions of contact interaction of the sample with the abrasive surface: normal loading, sliding speed, contact area, road of friction, dimension and hardness of abrasive particles. By measuring the mass wear using the developed methodology are estimated the rate of mass wear and the intensity of mass wear resistance.

The samples for the testing of wear resistance are cylindrical with diameter 8mm and length equal to the thickness of the cladded plate. The cylinders are cut out using water jet abrasive technology in order to avoid any possible deformations and stresses from undesired heating. The method for testing is implemented using the device shown in Fig. 8, which operate under kinematic scheme "finger-disc" [23].

The results from the testing for wear resistance are shown in Table 2. As is seen, the best results are achieved in Sample 11 where the increased hardness (with 56% compared to the reference sample) leads to almost 70% increase of wear resistance. Samples 7, 8, and 10 exhibit wear resistance close to that of the reference sample. The rest samples 2, 3, 4, 5, 6, and 9 exhibit lower wear resistance compared to the reference Sample 1.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Wear m, mg</th>
<th>Wear resistance I_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110.5</td>
<td>0.44.10^6</td>
</tr>
<tr>
<td>2</td>
<td>146.4</td>
<td>0.33.10^6</td>
</tr>
<tr>
<td>3</td>
<td>112.7</td>
<td>0.43.10^6</td>
</tr>
<tr>
<td>4</td>
<td>139.5</td>
<td>0.35.10^6</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>0.37.10^6</td>
</tr>
<tr>
<td>6</td>
<td>138.6</td>
<td>0.35.10^6</td>
</tr>
<tr>
<td>7</td>
<td>97.9</td>
<td>0.49.10^6</td>
</tr>
<tr>
<td>8</td>
<td>92.2</td>
<td>0.52.10^6</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>0.40.10^6</td>
</tr>
<tr>
<td>10</td>
<td>94.4</td>
<td>0.51.10^6</td>
</tr>
<tr>
<td>11</td>
<td>64.4</td>
<td>0.75.10^6</td>
</tr>
</tbody>
</table>

Figure 9 illustrates graphically the results from testing for wear resistance of weld overlayed layers using nano-modified electrodes.
CONCLUSIONS

1. Developed is innovative technology for manufacture of nano-modified electrodes for manual arc welding belonging to the group of electrodes for weld overlay of wear resistant surface layers, and trial amounts thereof are manufactured in experimental conditions.

2. Manual arc welding of steel plates S235JR has been carried out. The welded samples are polished and Vickers hardness is measured.

3. A significant increase of hardness, correspondingly with 56% and 38%, is observed in Samples No 11 and No 10, compared to the reference sample. The overlayed metal in Sample No 11 is nano-modified with titanium nitride coated with chrome, and that of Sample No 10 is nano-modified with silicon carbide.

4. Comparative study of samples for wear resistance is carried out using the method of accelerated surface wear with fixed abrasive. The highest wear resistance (70% higher than that of the reference sample) is achieved in the layer overlayed using electrode Sample No 11.

5. There are certain deviations in hardness and wear resistance that are possibly due to the presence of some sub-surface imperfections revealed through ultrasound non-destructive testing.

6. The nano-modification of surfaces through weld overlay with electrodes for manual arc welding results in considerable increase of hardness and wear resistance of the overlayed layers modified with nano sized particles of TiN coated with Cr.

The work is funded by ASME National Innovation Fund under Contract 6IF № 02-35/15.12.2012.

REFERENCES

