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Abstract: The paper considers the problem of reachability and observability finite interval
gramians computation and approximation for linear time-varying systems. Both gramians
are obtained from system trajectories. The reachability gramian is derived from the adjoint
state impulse response and the observability gramian is obtained from the zero-input output
response. The application of the adjoint system is discussed and the two basic impulse response
characteristics, namely the regular and the adjoint state impulse responses are presented. The
relation with the linear time-invariant case is also discussed and the role of the state transition
matrix for computing the gramians is shown. An algorithm for derivation of the state transition
matrix is proposed, which is based on the integration of the state equation by using the
method of Runge-Kutta. The gramians are approximated in terms of Legendre orthogonal series
representations of system trajectories.
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1. INTRODUCTION

The reachability and observability gramians have impor-
tant energy interpretation in linear system theory. The
reachability gramian contains the energy of the state im-
pulse response and accounts for the energy distribution
at the system input. The observability gramian contains
the energy of the zero-input output response and accounts
for the energy distribution at the system output. Both
gramians are related to some important system properties
and their nonsingulatity is a criterion for system complete
reachability and observability. The reachability gramian
participates in the expression for minimum energy least
squares control, which transforms the system from one
state to another. The observability gramian is used to
determine the initial state vector by observing the output
signal. Both gramians are part of the balancing algorithms
and can be used for solving the model order reduction
problem. The most important part in deriving the similar-
ity transformation matrices for system balancing is the
computation of the gramians. For linear time-invariant
systems, balanced model reduction is well developed area,
where the computation of system gramians is mainly
based on solving certain Lyapunov equations, see Antoulas
(2005). This is not the case for linear time-varying systems.
The system matrices for such systems are functions of
time, and the algebraic Lyapunov equations for comput-
ing the gramians are replaced by differential Lyapunov
equations. Solving such equations for large scale systems
is computationally cumbersome task and requires serious
computational resources. Moreover, there exist different
types of balancing and gramians definitions. Three types
of gramians for linear time-varying systems are defined

in Verriest & Kailath (1983) : finite interval gramians,
infinite interval gramians and sliding interval gramians.
Sliding interval gramians are initially used in Verriest &
Kailath (1983) and then in Verriest (2008) for system
balancing. However, the procedure for determining the
gramians requires computing high order matrix deriva-
tives, which creates certain numerical problems for large-
scale systems. The concept of sliding interval gramians is
also used in Shokoohi et al. (1983) for defining uniformly
balanced realizations. Computing the gramians by solving
differential equations of Lyapunov is presented in Lang
et al. (2016). The proposed method uses backward dif-
ferentiation formulas and the procedure of Rosenbrock.
Different approach for computing the gramians for linear
time-varying systems is proposed in Sandberg & Rantzer
(2004). The method is based on solving time-dependent
linear matrix inequalities. Solving linear matrix inequal-
ities for obtaining the gramians in the discrete domain
is also suggested in Lall & Beck (2003). Error bounds
on the error of approximation are presented in Sandberg
& Rantzer (2004) and Lall & Beck (2003), where the
time-dependence of the Hankel singular values leads to
different expressions for the bounds. Another approach,
which proposes an algorithm for computing the gramians
in the discrete domain for linear time-varying periodic
systems is presented in Ma et al. (2010). The periodic
discrete-time case is also considered in Varga (2000). A
different approach for computing the gramians is to use the
trajectories of the system, and to obtain the solution by
using data snapshots from system trajectories, see Sirovich
(1987). The state trajectory is discretized in equally dis-
tributed state points called snapshots, which are further
employed for low dimensional approximation of system
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states. The trajectories based approach avoids solving the
usual Lyapunov equations, while rather uses the snapshots
matrices, which one can obtain either from experiment or
from simulation. The trajectories based approach relates
closely to the approach of empirical gramians, see Lall et
al. (1999) and Himpe & Ohlberger (2013). The trajectories
based approach is also considered in Perev (2018a), where
the main derivations and results are obtained for linear
time-invariant systems. It is shown that the gramians can
be computed from the system state impulse and zero-
input output responses. The paper gives the general frame-
work for orthogonal polynomial approximation of system
gramians, and presents basic information about the errors
of approximation. The obtained results are extended for
the linear time-varying case by employing the empirical
gramians approach.

The present paper considers the problem of finite interval
gramians computation by using orthogonal polynomials
approximations of the adjoint system state impulse re-
sponse and the zero-input output response. A new feature
of the proposed method is the application of the adjoint
system state trajectories for computing the reachability
gramian. The presented algorithm is restricted only for
computing finite interval gramians. This algorithm can
not be used for computing infinite interval gramians, since
the adjoint system is unstable and on infinite time scale,
the adjoint state impulse response will approach infin-
ity. For difference with the empirical gramians approach,
the presented approach for computing the reachability
gramian is not experimental, because the adjoint state
impulse response can only be obtained by simulation. Both
gramians for linear time-varying systems are functions of
two variables, namely the initial time moment and the
final time moment. If the initial time moment is fixed,
then the state impulse response of the adjoint time-varying
system can be considered as its Green function. In order
to obtain the system trajectories we can use the Runge-
Kutta method for numerical integration, requiring step-
wise only several evaluations of system functions. The
proposed method avoids solving the matrix differential
equations of Lyapunov, which in the simplest case, requires
solving algebraic equations of Lyapunov at each step of the
algorithm. We claim that, the proposed method is more
efficient than the Lyapunov’s approach, since it replaces
integrating matrix differential equations with the simpler
operation of integrating vector differential equations and
thus, reducing the computational cost.

2. LINEAR TIME-VARYING SYSTEM GRAMIANS

Consider the stable linear time-varying system described
by its state space model:

ẋ(t) =A(t)x(t) +B(t)u(t), t ≥ 0 (1)

y(t) =C(t)x(t), x(0) = x0,

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp. The
reachability map of system (1) on the interval [t0, t1] is
defined by the expression Lr : PC([t0, t1]) → Rn as

Lr : u[t0,t1] →
∫ t1
t0

Φ(t1, τ)B(τ)u(τ)dτ , where Φ(t1, t) is

the state transition matrix on the interval [t, t1]. The finite
interval reachability gramian of system (1) on the interval
[t0, t1] is defined by the expression:

Wr(t0, t1) =

t1∫

t0

Φ(t1, τ)B(τ)B(τ)TΦ(t1, τ)
T dτ (2)

From (2) is clear that the reachability gramian is a sym-
metric positive semi-definite matrix. If we fix t0 and con-
sider the function X : t1 → Wr(t0, t1), the reachability
gramian can be computed as a solution of the following dif-
ferential Lyapunov equation, see Callier & Desoer (1991):

Ẋ(t) = A(t)X(t) +X(t)A(t)T +B(t)B(t)T (3)

with initial condition X(t0) = 0. Similarly, the observ-
ability map of system (1) on the interval [t0, t1] is defined
by the expression: L0 : Rn → PC([t0, t1]) as Lo : x0 →
C(t)Φ(t, t0)x0 for every t ∈ [t0, t1]. The finite interval
observability gramian of system (1) on the interval [t0, t1]
is defined by the expression:

Wo(t0, t1) =

t1∫

t0

Φ(τ, t0)
TC(τ)TC(τ)Φ(τ, t0)dτ (4)

From expression (4) is clear that the observability gramian
is also a symmetric positive semi-definite matrix. If we
fix t1 and consider the function Y : t0 → Wo(t0, t1), the
observability gramian can be computed as a solution of
the following differential Lyapunov equation, see Callier &
Desoer (1991):

Ẏ (t) = −A(t)TY (t)− Y (t)A(t)− C(t)TC(t), (5)

with final condition Y (t1) = 0. In the linear time-invariant
case, i.e. when the system matrices are constant ma-
trices, the gramians are defined as follows: Wr(0, T ) =∫ T

0
eAtBBT eA

T tdt and Wo(0, T ) =
∫ T

0
eA

T tCTCeAtdt. In
the time-invariant case, the gramians are functions of one
variable only, namely the difference between the final and
initial time moments. For such systems, the state impulse
response when u(t) = δ(t) is obtained as x(t) = eAtB. If
we apply at the input a shifted signal u(t) = δ(t− t0), the
obtained state impulse response is also a shifted function
x(t) = eA(t−t0)B. Yet, it has the same shape and form
and this is the reason to excite the linear time-invariant
system at t0 = 0. The reachability gramian can be com-
puted by using the state impulse response x(t) = eAtB as

Wr(0, T ) =
∫ T

0
x(τ)x(τ)T dτ . Similarly, the observability

gramian can be obtained as Wo(0, T ) =
∫ T

0
y(τ)T y(τ)dτ ,

where y(t) = CeAt is the zero-input output response
of the linear system due to sequentially selected unity
initial conditions. This is not the case for linear time-
varying systems. The state impulse response is obtained as
w(t, t0) = Φ(t, t0)B(t0) by exciting the system with delta
impulse u(t) = δ(t− t0). It is clear that, the state impulse
response depends on two variables: the initial time moment
t0 and the final time moment t. Moreover, for different
values of t0 the obtained characteristics will be different.
The reason for this conjecture is that the system parameter
values change with time, and if we change the initial
time moment, the parameter values will also change and
therefore, the time response will be different. For example,
by applying a shifted delta impulse u(t) = δ(t − t10), the
obtained state impulse response is w(t, t10) = Φ(t, t10)B(t10)
and if the input signal is u(t) = δ(t−t20), then the response
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will be w(t, t20) = Φ(t, t20)B(t20). The impulse responses
w(t, t10) and w(t, t20) are not only shifted in time, but
they are with different shape and form. Therefore, the
reachability gramian computed for different initial time
moments and the same duration, will also be different.
In this sense, the gramians Wr(t

1
0, t

1
1) and Wr(t

2
0, t

2
1) are

different, although the length of the time intervals, where
the gramians are defined are the same, i.e. t11−t10 = t21−t20.
The reachability gramian can be computed as:

Wr(t0, t1) =

t1∫

t0

w(t1, τ)w(t1, τ)
T dτ (6)

The state impulse response of the linear time-varying
system is Green function and for u(t) = δ(t − t0) can be
computed as w(t, t0) = Φ(t, t0)B(t0). The Green function
for a given system is determined by the kernel of the
integral operator and denotes the response of the system
to a concentrated into a given point unit input signal. The
unit input signal is concentrated at the time moment t0
and is presented by a delta function u(t) = δ(t − t0).
In the empirical gramians approach, we derive the state
impulse response w(t, t0), where the fixed time variable is
t0 and the time variable which changes is t. In the finite
interval gramians case however, the fixed time variable
for the integrand w(t1, τ) is the final time moment t1,
while the changing one is the initial time moment τ , see
expression (2). Therefore, the integration variables of the
integral kernel have to be replaced. This can be achieved
by switching the time variables in the state transition
matrix. This switching of time variables in the state
transition matrix can be obtained by using the adjoint
system description, see Perev (2018b). The homogeneous
adjoint of system (1) is defined by the equation:

ṗ(t) = −A(t)T p(t), (7)

where p(t) ∈ Rn is the state vector of the adjoint system
(7). We denote by Ψ(t1, t0) the state transition matrix
of the adjoint system (7) on the time interval [t0, t1].
The relation between the state transition matrices of the
original system (1) and the adjoint (7) is given by the
expression, see Callier & Desoer (1991):

Ψ(t, t0) = Φ(t0, t)
T (8)

It is clear that the ordering of the time variables for the
adjoint system is reversed with respect to the ordering
of these time variables in the original system. Using
(8), the state transition matrix of the original system
can be written in the form Φ(t, τ) = Φ(t, t0)Φ(t0, τ) =
Φ(t, t0)Ψ(τ, t0)

T . Therefore, the computation of the state
transition matrix as a function of its first variable depends
on the computation of the state transition matrix of
the original system (1) by computing Φ(t, t0) and the
computation of the state transition matrix of the adjoint
system (7) in terms of computing Ψ(τ, t0). The reachability
gramian of the original system (1) can be computed as:

Wr(t0, t1) = Φ(t1, t0)

t1∫

t0

Ψ(τ, t0)
TB(τ)B(τ)T

·Ψ(τ, t0)dτΦ(t1, t0)
T , (9)

where expression (8) has been used. Therefore, in order
to compute the reachability gramian, the state transition
matrix of the adjoint system (7) has to be derived and
appropriately used in the integral (9). However, there
exists a major obstruction in computing Ψ(t, t0) due to
instability of system (7). There exists a fundamental dif-
ference between the regular and adjoint state impulse
responses. While the regular state impulse response for a
stable system converges to zero, the adjoint state impulse
response will diverge. Therefore, the adjoint state impulse
response can not be computed on an infinite time interval.
The state impulse response for an unstable system can
be computed only on a finite interval of time. The proce-
dure of computing the finite interval reachabilty gramian
follows the idea behind equation (3), where we fix the
initial time moment t0. The application of the trajectory-
based approach to the adjoint system depends also on the
trajectories, obtained from the regular system. Since the
adjoint system is unstable, the interval of integration for
this system trajectories is determined entirely from the
interval of integration of the original regular system trajec-
tories. The algorithm for computing the system gramians
is further presented:

Algorithm for computation of system gramians

The reachyability gramian is obtained as follows:

• Fix t0. Apply the Runge-Kutta algorithm to system
(1), compute its state impulse response and determine
the state transition matrix Φ(t, t0), t ≥ t0

• Determine the final time moment and therefore, the
interval of integration [t0, t1] from stability consider-
ations

• Apply the Runge-Kutta algorithm to the adjoint
system on this interval and compute the matrices
Ψ(τ, t0)

T as a function of the current time moment
• Use the expression Φ(t, τ) = Φ(t, t0)Φ(t0, τ) =

Φ(t, t0)Ψ(τ, t0)
T to obtain the state transition matrix

of system (1) as function of its first argument
• Determine the state trajectory w(t, τ) = Φ(t, τ)B(τ)

and compute Wr(t0, t1) =
∫ t1
t0

w(t, τ)w(t, τ)T dτ .

The observability gramian is obtained as follows:

• Apply the Runge-Kutta algorithm to system (1) and
determine the state transition matrix Φ(t, t0), t ≥ t0

• Obtain the transpose of the zero-input output re-
sponse h(t, t0), where h(t, t0) = Φ(t, t0)

TC(t0)
T is

obtained by sequentially selecting the initial condi-
tions as the columns of the identity matrix. In order
to see this, consider the zero-input output response
y(t) = C(t)Φ(t, t0)x0. If we fix the initial time mo-
ment t0 and apply the computation of the output with
respect to different initial state vectors, we obtain the
following expression:

Y (t) = [ y1(t) y2(t) · · · yn(t) ] = (10)

[C(t)Φ(t, t0)x0,1 · · · C(t)Φ(t, t0)x0,n ] ,

where the initial state vectors are selected as columns
of the identity matrix, i.e. x0,j = ej , j = 1, 2, · · · , n.
Therefore, Y (t)T = Φ(t, t0)

TC(t)T = h(t, t0) is a
[n× 1] vector.

• Compute the observability gramian as:
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Wo(t0, t1) =

t1∫

t0

h(τ, t0)h(τ, t0)
T dτ, (11)

After computing both gramians for the initial time mo-
ment t0, we can change the initial time moment as t0 →
t0 + δ and repeat the whole procedure again. We apply
the trajectories based approach for computing the finite
interval gamians by utilizing the fourth order Runge-Kutta
algorithm. The order of accuracy for the presented method
is O(h4), where h is the discretization step. The main
computational task is to integrate numerically the adjoint
state equation, which is a vector differential equation.
Different approach for computing the gramians is by solv-
ing the matrix differential equations of Lyapunov. In its
simplest form, when the system matrices are constant,
most of the popular algorithms require solving algebraic
Lyapunov equations at each step of the algorithm, see
Lang et al. (2015), Behr et. al (2018). However, in the case
when system matrices are functions of time, the numerical
integration of the Lyapunov matrix differential equations
is unavoidable, see Benner & Stykel (2017), Behr et. al
(2018). The main advantage of the proposed method is
that, it replaces integrating matrix differential equations
with integrating vector differential equations. Additional
feature of its efficiency is the possibility for parallelization
of the computing processes, which further reduces the time
of calculations.

3. LEGENDRE POLYNOMIAL APPROXIMATION OF
SYSTEM GRAMIANS

The Legendre polynomials form a complete set of orthog-
onal functions in the Hilbert space L2[−1, 1]. The n-th
order Legendre polynomial is defined as in Abramowitz &
Stegun (1972):

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n, n = 0, 1, 2, · · · (12)

The Legendre polynomials can also be computed by us-
ing the following recurrence relation, see Abramowitz &
Stegun (1972):

Pn+1(t) =
(2n+ 1)tPn(t)− nPn−1(t)

n+ 1
, (13)

P0(t) = 1, P1(t) = t, n = 1, 2, · · ·

The Legendre polynomials can be normalized by using

the functions ϕn(t) =
√

2n+1
2 Pn(t) and they satisfy

the orthonormality condition with an weighting function
w(t) = 1. When the definition interval is different than
[−1, 1], the Legendre functions are rescaled and the so
called shifted Legendre functions are computed. For the
Hilbert space L2[t0, t1], the shifted Legendre functions

are obtained as ϕn(t) =
√

2n+1
2 Pn(

2
t1−t0

t − t1+t0
t1−t0

). Then

every function f(t) ∈ L2[t0, t1] can be approximated on
the interval [t0, t1] by the Legendre polynomial series

as f(t) ≈
∑N

n=0 qn

√
2n+1

2 Pn(
2

t1−t0
t − t1+t0

t1−t0
), where the

Fourier coefficients are computed as:

qn =
2

t1 − t0

√
2n+ 1

2

t1∫

t0

f(t)Pn(
2

t1 − t0
t− t1 + t0

t1 − t0
)dt,

withN being the order of series truncation in the Legendre
orthogonal series approximation. The mean square error
of approximation is determined by the expression, see

Schetzen (1989), as ε2N =
∫ t1
t0

f(t)2dt −
∑N

n=0 q
2
n. In the

vector case, the error of approximation is determined from

the expression: ε2N =
∫ t1
t0

f(t)T f(t)dt−
∑N

n=0 q
T
n qn

We consider the Legendre orthogonal series approxima-
tion of system gramians. Assume first the SISO case.
As a first step we fix the initial time moment t0. Based
on energy considerations, we determine the final time
moment t1. We partition the time interval [t0, t1] uni-
formly with a step δ = t1−t0

n . The next step is to com-
pute the adjoint state impulse response w(t1, τ), τ ∈
[t0, t1] by using the algorithm presented in the previ-
ous section. Then, we determine its Legendre series ap-

proximation as w(t1, τ) ≈
∑N

k=0 qk

√
2n+1

2 Pn(
2

t1−t0
τ −

t1+t0
t1−t0

), where qk, k = 0, 1, 2, · · ·N are the Fourier
vector coefficients of the Legendre series expansion of
the impulse response, which are determined as qk =

2
t1−t0

√
2k+1

2

∫ t1
t0

w(t1, τ)Pk(
2

t1−t0
τ − t1+t0

t1−t0
)dτ . The reach-

ability gramian is determined as:

Wr(t0, t1) =

t1∫

t0

w(t1, τ)w(t1, τ)
T dτ ≈ t1 − t0

2

N∑
k=0

qkq
T
k

In the MIMO case, the reachability gramian approxima-
tion is computed by using the Dyadic Expansion Lemma
of two matrices product, see Callier & Desoer (1991),

as Wr(t0, t1) ≈ t1−t0
2

∑N
k=0

∑m
i=1 q

i
k(q

i
k)

T , where qik, k =
0, 1, 2, · · · , N is the Fourier vector coefficient corresponding
to the ith input signal component i = 1, 2, · · · ,m, when the
other components are zero, see Perev (2018a). Similarly to
the reachability gramian case, we approximate the observ-

ability gramian as Wo(t0, t1) =
∫ t1
t0

h(τ, t0)h(τ, t0)
T dτ ≈

t1−t0
2

∑N
k=0 fkf

T
k , where fk, k = 0, 1, 2, · · · , N are the

Fourier vector coefficients of the Legendre series expansion
of the zero-input output response of system (1) and are

computed as fk = 2
t1−t0

√
2k+1

2

∫ t1
t0

h(τ, t0)Pk(
2

t1−t0
τ −

t1+t0
t1−t0

)dτ , where h(t, t0) = Φ(t, t0)
TC(t0)

T . In the MIMO
case the observability gramian is approximated by the

expression Wo(t0, t1) ≈ t1−t0
2

∑N
k=0

∑p
j=1 f

j
k(f

j
k)

T , where

f j
k , k = 0, 1, 2, · · · , N is the Fourier vector coefficient in

the Legendre series expansion for the jth output response
j = 1, 2, · · · p, see Perev (2018a).

4. NUMERICAL EXAMPLE

Consider the linear time-varying stable system (1), where
the system matrices are determined as follows:

A(t) =

[
−1 + cos2 t 1− ae−0.2t sin t cos t

−1− ae−0.4t sin t cos t −1 + a sin2 t

]
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Fig. 1. Adjoint state impulse responses

Fig. 2. Adjoint reversed-time state impulse responses

Fig. 3. Approximated adjoint reversed-time state impulse
responses

B(t) =

[
1
1

]
, C(t) = [ 1.5 0.5 ] ,

where the parameter a assumes the value a = 1.5. The
state impulse response characteristics are obtained on the
interval [0, 0.5] with discretization step δ = 0.005.

It is clear that the adjoint state impulse response is
unstable and is bounded only on a finite interval of time
as can be seen in fig.1. If we reverse the time variable by
using τ = t1 − t, we obtain the adjoint reversed-time state
impulse responses in fig.2.

The next step is to apply the Legendre orthogonal series
approximation of these characteristics and to compute the

Fig. 4. Approximated zero-input output responses

Fig. 5. Hankel singular values as functions of t0

system gramians based on the approximated curves. We
use the same discretization step for the series expansion
as δ = 0.005 and the order of series truncation is N =
25. The approximated adjoint reversed-time state impulse
responses are shown in fig.3.

The zero-input output approximate responses obtained
by using 25th order Legendre series approximation of the
output characteristics are shown in fig.4. Fig.5 contains
the Hankel singular values of system (1) for the time
interval t ∈ [0, 0.5], when the time variable is the initial
time moment t = t0. The corresponding Hankel singular
values on the same time interval, obtained by orthogonal
approximation of the system (1) adjoint state impulse and
the zero-input output responses are shown in fig.6, where
both Hankel singular values are again functions of the
initial time moment t0.

5. CONCLUSION

The paper considers the problem for Legendre orthogonal
polynomials approximation of system finite interval grami-
ans. A simple method for computing the gramians instead
of solving differential Lyapunov equations is presented.
The proposed method is based on approximation of the
adjoint system state impulse response and the regular sys-
tem zero-input output response. The numerical implemen-
tation of the method uses the Runge-Kutta algorithm for
performing linear time-varying system simulations. Both
gramians are approximated by using Legendre orthogonal
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The paper considers the problem for Legendre orthogonal
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ans. A simple method for computing the gramians instead
of solving differential Lyapunov equations is presented.
The proposed method is based on approximation of the
adjoint system state impulse response and the regular sys-
tem zero-input output response. The numerical implemen-
tation of the method uses the Runge-Kutta algorithm for
performing linear time-varying system simulations. Both
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Fig. 6. Approximated HSV as functions of t0

polynomial representations of the system adjoint state
impulse response and the zero-input output response.
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