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Abstract. The Protter’s problems are multidimensional variants of the 2-D Darboux problems for hyperbolic and weakly hyperbolic
equations and they are not well-posed in the frame of classical solvability, since their adjoint homogeneous problems have infinitely
many nontrivial classical solutions. The generalized solutions of the Protter’s problem may have strong singularities even for very
smooth right-hand side functions of the equation. These singularities are isolated at one boundary point and do not propagate along
the bicharacteristics which is unusually for the hyperbolic equations.

Here we treat a generalization of the well studied Protter’s problem for the 4-D wave equation, considering a case of more
general equation involving lower order terms with constant coefficients. First, we announce explicit formulas for the nontrivial
classical solutions of the corresponding adjoint homogeneous problem. Further, we give an exact integral representation of the
generalized solutions of the considered problem as well as an asymptotic expansion of their singularities.

INTRODUCTION

Denote the points in R4 as (x, t) := (x1, x2, x3, t) and, respectively, |x| :=
√

x2
1 + x2

2 + x2
3.

For a1, a2, a3, b, c ∈ R consider the following boundary value problem:

3∑
i=1

vxi xi − vtt +

3∑
i=1

aivxi + bvt + cv = g(x, t) in Ω, (1)

v|Σ0∪Σ1 = 0, (2)

where the region
Ω := {(x, t) : 0 < t < 1/2, t < |x| < 1 − t}

is bounded by the ball
Σ0 := {(x, t) : t = 0, |x| < 1}

and by two characteristic surfaces of equation (1)

Σ1 := {(x, t) : 0 < t < 1/2, |x| = 1 − t} , Σ2 := {(x, t) : 0 < t < 1/2, |x| = t} .

For the sake of convenience instead of problem (1)–(2) we will treat another one, which is immediately derived
from (1)–(2) applying the substitution

u = v exp
(

a1

2
x1 +

a2

2
x2 +

a3

2
x3 −

b
2

t
)
.
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Problem Pγ. For γ ∈ R find a solution u(x, t) of the equation

3∑
i=1

uxi xi − utt − γu = f (x, t) in Ω, (3)

which satisfies the boundary condition
u|Σ0∪Σ1 = 0.

The constant γ is related to the coefficients in (1) by

γ =
1
4

(
a2

1 + a2
2 + a2

3 − b2 − 4c
)

and also we have

f (x, t) = g(x, t) exp
(

a1

2
x1 +

a2

2
x2 +

a3

2
x3 −

b
2

t
)
.

The adjoint problem to Pγ is as follows:
Problem P∗γ. Find a solution to the self-adjoint equation (3) in Ω which satisfies the boundary condition

u|Σ0∪Σ2 = 0.

In 1954 M. H. Protter ([21, 22]) proposed some multidimensional boundary value problems for hyperbolic and
weakly hyperbolic equations. These problems are multidimensional analogues of the planar Darboux problems, since
the boundary data is imposed on one of the characteristic surfaces of the equation and on a non-characteristic surface.
Actually, Protter arrived to his problems while studied multidimensional variants of the famous Guderley-Morawetz
problem for mixed-type equations and restricted his investigation in the hyperbolic part of the considered domain.

However, while the two-dimensional Darboux problem is well posed, this is not true for the Protter’s problems,
since they have infinite-dimensional cokernels ([11, 19, 24]). This means that for the existence of classical solutions
it is necessary infinitely many orthogonality conditions on the right-hand side of the equation to be fulfilled. For
this reason (following [19]) it is suitable to study the Protter’s problems in the frame of generalized solutions with
possible big singularities. Today it is well-known that even for very smooth right-hand sides of the equation such
singularities really exist. It is interesting that they are isolated at one boundary point and do not propagate along the
bicharacteristics, which is not traditionally assumed for the hyperbolic equations.

Different Protter’s problems for 3-D and 4-D equations were studied for example in [3, 7, 14, 15, 17, 18, 19, 20].
Generalizations of the Protter’s problems (for mixed-type equations, for nonlinear equations etc) are considered in
[1, 4, 10, 12, 16, 23].

In the papers [17, 20] it was studied at length a particular case of Problem Pγ, more precisely the case γ = 0,
when equation (3) is the 4-D wave equation. Here we generalize this research, adding to the wave operator lower order
terms with constant coefficients.

Some 3-D Protter’s problems for hyperbolic and weakly hyperbolic equations involving lower terms (in a more
general case, when the coefficients are not restricted to be constant) are studied in [5, 6, 8, 9, 13]. Different results
on the existence and uniqueness of generalized solutions were proven. However, in the case of nontrivial lower order
terms, any explicit formulas for the solutions of these problems or their adjoint problems were not given.

ILL-POSEDNESS AND GENERALIZED SOLVABILITY OF THE PROBLEM

For k, n ∈ N ∪ {0} define the functions:

Hn
k (r, t) :=

t
(
r2 − t2

)n−2k−1

rn−2k+1 2F1

(
n − k +

1
2
,−k,

3
2

;
t2

r2

)
0F1

(
n − 2k;

γ

4

(
r2 − t2

))
and let Y s

n(x), n ∈ N∪{0}, s = 1, 2, . . . , 2n + 1 be the three-dimensional spherical functions, defined on the unit sphere
S 2 := {x ∈ R3 : |x| = 1}.
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Then we state the following lemma:

Lemma 1. For k = 0, . . . , [(n − 1)/2] − 2 and s = 1, 2, . . . , 2n + 1 the functions

vn
k,s(x, t) :=

{
Hn

k

(
|x|, t

)
Y s

n

(
x/|x|

)
, (x, t) , O,

0, (x, t) = O

with O := (0, 0, 0, 0), are linearly independent classical solutions from C2(Ω̄) of the homogeneous Problem P∗γ.

Then Problem Pγ is not well-posed in the frame of classical solvability. A necessary condition for the existence
of a classical solution of Problem Pγ is the orthogonality of the right-hand side function f (x, t) to all these functions
vn

k,s(x, t). This means that an infinite number of orthogonality conditions µn
k,s = 0 with

µn
k,s :=

∫
Ω

vn
k,s(x, t) f (x, t) dxdt (4)

must be fulfilled. In this situation (which is typical for the Protter’s problems at all) it is suitable to seek for solutions
in a generalized sense. Define the generalized solutions of Problem Pγ similarly to [5, 17]:

Definition 1. A function u = u(x, t) is called a generalized solution of Problem Pγ in Ω if :
(1) u ∈ C1(Ω̄\O), u|Σ1 = 0, u|Σ0\O = 0;
(2) the identity ∫

Ω

(utwt − ux1 wx1 − ux2 wx2 − ux3 wx3 − γuw − f w) dxdt = 0

holds for all w from
W0 := {w ∈ C1(Ω̄) : w|Σ0 = 0, w ≡ 0 in a neighborhood of Σ2}.

This definition allows the generalized solutions to have strong singularities at the point O. The results we give
below show that in the general case such singularities really exist.

We have the following result on the generalized solvability of Problem Pγ:

Theorem 1. Problem Pγ has at most one generalized solution in Ω. Further, let the right-hand side of equation
(3) be of the form

f (x, t) =

l∑
n=0

2n+1∑
s=1

f s
n

(
|x|, t

)
Y s

n

(
x/|x|

)
, l ∈ N ∪ {0} (5)

and f ∈ C(Ω̄). Then there exists a generalized solution u(x, t) of Problem Pγ.

Actually, it is well known that the spherical functions form a complete orthonormal system in L2(S 2), i.e. the
function in the right-hand side of (5) is a partial sum of a Fourier expansion.

2-D PROBLEM RELATED TO Pγ

Next, consider the following 2-D problem:

Problem Pγ2. Find a function U(ξ, η) such that:
(1) U(ξ, η) solves the differential equation

Uξη −

(
n(n + 1)

(2 − ξ − η)2 +
γ

4

)
U = F(ξ, η) (6)

in the domain D :=
{
(ξ, η) : 0 < ξ < η < 1

}
;

(2) U(ξ, η) satisfies the boundary conditions:

U(0, η) = 0, U(ξ, ξ) = 0, 0 ≤ ξ < 1;

(3) U ∈ C2(D) ∩C(D̄ \ (1, 1)).
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This problem is related to Problem Pγ in the following way:

Lemma 2. Let the right-hand side of equation (3) be of the form (5) and f ∈ C(Ω̄). Then the unique generalized
solution u(x, t) of Problem Pγ, stated in Theorem 1, can be represented as

u(x, t) =
1
|x|

l∑
n=0

2n+1∑
s=1

U s
n

(
1 − |x| − t, 1 − |x| + t

)
Y s

n

(
x/|x|

)
,

where the functions U s
n(ξ, η) are solutions of Problem Pγ2 with corresponding right-hand side functions in (6)

F(ξ, η) =
1
8

(2 − ξ − η) f s
n

(
2 − ξ − η

2
,
η − ξ

2

)
.

Actually, Problem Pγ2 is obtained from Problem Pγ via the method of separation of variables. According to the
ill-posedness of Problem Pγ and the possible singularity of the function u(x, t) at the point O, the functions U s

n(ξ, η)
are allowed to have singularity at the point (1, 1) (note that equation (6) has a coefficient with singularity at this point
and the statement of Problem Pγ2 allows its solutions to be discontinuous there).

We solve Problem Pγ2 explicitly via the Riemann-Hadamard method. To write the solution, define the function:

R(ξ, η; ξ0, η0) := Ξ2

(
n + 1,−n, 1;

−(ξ0 − ξ)(η0 − η)
(2 − ξ − η)(2 − ξ0 − η0)

,
γ

4
(ξ0 − ξ)(η0 − η)

)
,

where

Ξ2(a, b, c; x, y) =

∞∑
i=0

∞∑
j=0

(a)i(b)i

(c)i+ j i! j!
xiy j

is a confluent hypergeometric series of two variables (this series is given for example in [2]). Note that in
Ξ2(n + 1,−n, 1; x, y) we have a finite sum in respect to the index i and the series in respect to j has an infinite radius of
convergence.

An integral representation of U(ξ, η) is given in the next theorem.

Theorem 2. Let F ∈ C(D̄). Then Problem Pγ2 is uniquely solvable and its solution has the following integral
representation at a point (ξ0, η0) ∈ D:

U(ξ0, η0) =

∫ ξ0

0

∫ η0

ξ

Φ(ξ, η; ξ0, η0)F(ξ, η) dηdξ, (7)

where the Riemann-Hadamard function Φ(ξ, η; ξ0, η0) is defined as

Φ(ξ, η; ξ0, η0) :=
{

R(ξ, η; ξ0, η0), η > ξ0,
R(ξ, η; ξ0, η0) − R(η, ξ; ξ0, η0), η < ξ0.

From (7) one could see that in the general case, if no special conditions on the function F(ξ, η) are imposed, the
solution U(ξ, η) should have a power-type singularity at the point (1, 1).

ASYMPTOTIC BEHAVIOR OF THE SINGULAR SOLUTIONS

A specific feature of the Protter’s problems studied so far (including our problem with γ = 0) is that the asymptotic
behavior of their singular solutions is determined by orthogonality conditions of the right-hand side of the equation in
respect to the nontrivial solutions of the adjoint homogeneous problem. We find that this is true for Problem Pγ with
γ , 0 as well.

First, we give the asymptotic expansion of the singular solutions of Problem Pγ2.
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From Lemma 1 it follows that for k = 0, . . . , [n/2] − 2 the functions

Hn
k (ξ, η) := (η − ξ)

(1 − ξ)n−2k−1(1 − η)n−2k−1

(2 − ξ − η)n−2k 2F1

(
n − k +

1
2
,−k,

3
2

;
(η − ξ)2

(2 − ξ − η)2

)
0F1

(
n − 2k;

γ

4
(1 − ξ)(1 − η)

)
,

continued at the point (1, 1) as Hn
k (1, 1) := 0, are linearly independent classical solutions of the adjoint to Pγ2 homo-

geneous problem, which means:
(1) Hn

k ∈ C2(D̄);
(2) Hn

k (ξ, η) solve equation (6) with F(ξ, η) ≡ 0;
(3) Hn

k (ξ, 1) = 0, Hn
k (ξ, ξ) = 0.

Further, setting η0 = 1, we find an expansion of the function Φ(ξ, η; ξ0, 1) in powers of 1 − ξ0, namely:

R(ξ, η; ξ0, 1) =

n∑
p=0

(1 − ξ0)−p (n + 1)p(−n)p

p! p!
W p

n (ξ, η) +

∞∑
p=1

(1 − ξ0)p γp

4p p! p!
W p

n (ξ, η)

with

W p
n (ξ, η) :=

(1 − ξ)p(1 − η)p

(−1)p(2 − ξ − η)p 2F1

(
p + n + 1, p − n, p + 1;

1 − η
2 − ξ − η

)
0F1

(
p + 1;

γ

4
(1 − ξ)(1 − η)

)
and

R(ξ, η; ξ0, 1) − R(η, ξ; ξ0, 1) =

[(n−1)/2]∑
k=0

an
k(1 − ξ0)2k+1−nHn

k (ξ, η) + γ

[(n−2)/2]∑
k=−∞

bn
k(1 − ξ0)n−2k−1Hn

k (ξ, η),

where an
k and bn

k are nonzero constants.
Applying this expansion into (7) we obtain that

U(ξ, 1) =

[(n−1)/2]∑
k=0

cn
k µ

n
k (1 − ξ0)2k+1−n + g(ξ)(1 − ξ), (8)

where

µn
k :=

∫
D

Hn
k (ξ, η)F(ξ, η) dξdη,

cn
k = const , 0 and the function g(ξ) ∈ C([0, 1)) is bounded on the segment [0, 1]. Note that the order of singularity

of U(ξ, 1) is controlled by the coefficients µn
k , i.e. by orthogonality conditions of the right-hand side F(ξ, η) in respect

to the corresponding functions Hn
k (ξ, η). The coefficients µn

k are related to the coefficients (4) as µn
k = βn

kµ
n
k,s, where βn

k
are nonzero constants independent of f (x, t).

Now, having a boundary data given by (8) and the boundary condition U(0, η) = 0, we solve Problem Pγ2 by the
Riemann method to obtain the following result:

Theorem 3. Let F ∈ C(D̄). Then the unique solution of Problem Pγ2 has the following asymptotic representation
at the singular point (1, 1):

U(ξ, η) =

[(n−1)/2]∑
k=0

µn
k Gn

k(ξ, η) (1 − ξ0)2k+1−n + G(ξ, η),

where:
(1) the functions Gn

k(ξ, η) are bounded in D̄ and independent of F(ξ, η);
(2) the function G(ξ, η) is bounded in D̄;
(3) Gn

k(ξ, 1) = cn
k and G(ξ, 1) = g(ξ)(1 − ξ).

Finally, using Theorem 3, we may describe the asymptotic behavior of the singular solutions of the 4-D Problem
Pγ by the next theorem:
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Theorem 4. Suppose that the right-hand side function f ∈ C(Ω̄) has the form (5). Then the unique generalized
solution u(x, t) of Problem Pγ belongs to C2(Ω̄\O) and has the following asymptotic expansion at the point O:

u(x, t) =
1
|x|

 l∑
p=1

|x|1−pQp(x, t) + Q(x, t)

 ,
where:

(1) the function Q(x, t) is bounded in Ω̄ and in the case γ = 0 it satisfies the a priori estimate

|Q(x, t)| ≤ C t max
Ω̄
| f (x, t)|, (x, t) ∈ Ω

with a constant C independent of f ;
(2) the functions Qp, p = 1, . . . , l satisfy the equalities

Qp(x, t) =

[(l−p)/2]∑
k=0

2p+4k+1∑
s=1

µ
p+2k
k,s Qp+2k

k,s (x, t) (9)

with functions Qn
k,s(x, t) bounded in Ω̄ and independent of f , which in the case γ = 0 have the following exact

expression:

Qn
k,s(x, t) = hn

k
t
|x| 2F1

(
n − k +

1
2
,−k,

3
2

;
t2

|x|2

)
Y s

n

(
x/|x|

)
, hn

k = const , 0;

(3) if at least one of the constants µp+2k
k,s in (9) is different from zero, then for the corresponding function Qp(x, t)

there exists an unit vector α ∈ R3, such that1

lim
t→+0

Qp(αt, t) = const , 0.

This means that in this case the order of singularity of u(x, t) will be no smaller than p.

According to this theorem, the order of singularity of u(x, t) can be strictly fixed by the coefficients (4), i.e. by
choosing the right-hand side f (x, t) to be orthogonal to the appropriate functions vn

k,s(x, t).

Remark 1. We mention that for the particular case when γ = 0 there is a similar theorem in [17], but here we
have the following two improvements:

(1) the right-hand side f (x, t), instead of C1(Ω̄), is allowed to be only continuous;
(2) we give the exact form of the functions Qn

k,s(x, t).

Acknowledgments

This work was partially supported by the Bulgarian Ministry of Education and Science under the National Program
for Research “Young Scientists and Postdoctoral Students” (approved with RMS No. 577/ 17.08.2018) and by Sofia
University Grant 80-10-109/2019.

REFERENCES

[1] A. K. Aziz, M. Schneider, Frankl-Morawetz problems in R3, SIAM J. Math. Anal. 10, 913–921 (1979).
[2] H. Bateman, A. Erdelyi, Higher Transcendental Functions, vol. 1, McGraw-Hill Book Company, Inc., (1953).
[3] J. B. Choi, J. Y. Park, On the conjugate Darboux-Protter problems for the two-dimensional wave equations in

the special case, J. Korean Math. Soc. 39, No 5, 681–692 (2002).
[4] L. Dechevski, K. Payne, N. Popivanov, Nonexistence of Nontrivial Generalized Solutions for 2-D and 3-D

BVPs with Nonlinear Mixed Type Equations, AIP Conf. Proc. 1910, 040015-1 – 040015-13 (2017).

1For 0 < t < 1/2 the points (αt, t) lie on the cone Σ2 and form a path to the point O.

030016-6

https://doi.org/10.1137/0510085
https://doi.org/10.4134/JKMS.2002.39.5.681
https://doi.org/10.1063/1.5013982


[5] M. K. Grammatikopoulos, T. D. Hristov, N. Popivanov, Singular solutions to Protter’s problem for the 3-D
wave equation involving lower order terms, Electron. J. Diff. Eqns. 2003, No 03, 31 pages (2003).

[6] T. Hristov, Singular solutions to the Protter-Morawetz problem for Keldysh-type equations involving lower
order terms, AIP Conf. Proc. 2048, 040025-1 – 0040025-10 (2018).

[7] T. Hristov, A. Nikolov, N. Popivanov, M. Schneider, On the existence and uniqueness of a generalized solution
of the Protter problem for (3+1)-D Keldysh-type equations, BVP 26, 1–30 (2017).

[8] T. Hristov, N. Popivanov, Singular solutions to Protter’s problem for a class of 3-D weakly hyperbolic equa-
tions, Compt. Rend. Acad. Bulg. Sci. 60, No 7, 719–724 (2007).

[9] T. Hristov, N. Popivanov, M. Schneider, Estimates of singular solutions of Protter’s problem for the 3-D
hyperbolic equations, Commun. Appl. Anal. 10, No 2, 97–125 (2006).

[10] T. Hristov, N. Popivanov, M. Schneider, On the Uniqueness of Generalized and Quasi-regular Solutions for
Equations of Mixed Type in R3, Sib. Adv. Math. 21, No 4, 262–273 (2010).

[11] Khe Kan Cher, On nontrivial solutions of some homogeneous boundary value problems for the multidi-
mensional hyperbolic Euler-Poisson-Darboux equation in an unbounded domain, Differ. Equations 34, No 1,
139–142 (1998).

[12] D. Lupo, K. Payne, N. Popivanov, On the degenerate hyperbolic Goursat problem for linear and nonlinear
equations of Tricomi type, Nonlinear Analysis 108, 29–56 (2014).

[13] A. Nikolov, N. Popivanov, Exact behavior of singular solutions to Protter’s problem with lower order terms,
Electron. J. Diff. Equ. 2012, No 149, 1–20 (2012).

[14] A. Nikolov, N. Popivanov, Riemann-Hadamard method for solving a (2+1)-D problem for degenerate hyper-
bolic equation, AIP Conf. Proc. 1690, 040001-1 – 040001-7 (2015).

[15] N. Popivanov, T. Hristov, A. Nikolov, M. Schneider, Singular Solutions to a (3+1)-D Protter-Morawetz Prob-
lem for Keldysh-Type Equations, Advances in Mathematical Physics 2017, ID 1571959, 1–16 (2017).

[16] N. Popivanov, E. Moiseev, Y. Boshev, On the degenerate hyperbolic Cauchy-Goursat problem for nonlinear
Gellerstedt equations in the frame of generalized solvability, AIP Conf. Proc. 2048, 040027-1 – 040027-13
(2018).

[17] N. Popivanov, T. Popov, R. Scherer, Asymptotic expansions of singular solutions for (3+1)-D Protter prob-
lems, J. Math. Anal. Appl. 331, 1093–1112 (2007).

[18] N. Popivanov, T. Popov, A. Tesdall, Semi-Fredholm solvability in the framework of singular solutions for the
(3+1)-D Protter-Morawetz problem, Abstr. Appl. Anal. 2014, ID 260287, 19 pages (2014).

[19] N. Popivanov, M. Schneider, The Darboux problems in R3 for a class of degenerating hyperbolic equations,
J. Math. Anal Appl. 175, No 2, 537–579 (1993).

[20] T. P. Popov, New singular solutions for the (3+1)-D Protter problem, Bulletin of the Karaganda University,
series Mathematics 3, No 91, 61–68 (2018).

[21] M. H. Protter, A boundary value problem for the wave equation and mean value problems, Annals of Math.
Studies 33, 247–257 (1954).

[22] M. H. Protter, New boundary value problem for the wave equation and equations of mixed type, J. Rat. Mech.
Anal. 3, 435–446 (1954).

[23] J. M. Rassias, Tricomi-Protter problem of nD mixed type equations, Int. J. Appl. Math. Stat. 8, No M07,
76–86 (2007).

[24] Tong Kwang-Chang, On a boundary value problem for the wave equation, Science Record, New Series 1,
1–3 (1957).

030016-7

https://doi.org/10.1063/1.5082097
https://doi.org/10.1016/j.na.2014.05.009
https://doi.org/10.1063/1.4936708
https://doi.org/10.1155/2017/1571959
https://doi.org/10.1016/j.jmaa.2006.09.036
https://doi.org/10.1155/2014/260287
https://doi.org/10.1006/jmaa.1993.1190
https://doi.org/10.31489/2018M3/61-68
https://doi.org/10.31489/2018M3/61-68
https://doi.org/10.3103/S1055134411040043



