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Abstract. Polyurethane foams are broadly used in various applications, from domestic items to
aero-spatial and medical devices. Knowledge of the damping characteristics of the materials is a
necessity, both for the classic ones who due to ageing suffer changes of behaviour and for the newly
developed. eco-friendly materials. In the present work, the polyurethane foam is modelled as an
assembly between a nonlinear elastic element and a dashpot. in parallel. This material is subjected
to impact by the metallic bob of a mathematical pendulum. For the completed dynamic system. the
mathematical model is developed for finding the characteristic parameter of damping. There are also
presented the experimental methods for achieving the constants from the dynamical equation of the
model: the elastic parameters of static loading, the impact velocity and the coefficient of restitution.
The theoretical model should be validated: the signal provided by an accelerometer sensor attached
to the bob is interpolated by the signal given after the integration of the dynamical equation and a
very good agreement is obtained. The expedite manner and the low cost are the main advantages
of the method.
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AIMS AND BACKGROUND

Polyurethanes foams are a family of flexible synthetic polymers wished for varied
applications from automotive, robotics, shoe industry. building construction, pack-
aging, domestic application and medicine. There are well known the wear effects
produced by vibrations' and so, anti vibration dampers are nowadays research
domain. Reprocessing of these foams is difficult and costly and due to the recy-
cling complications, they are cast-off after being used, generating contamination
problems of environment®, Biological degradation of polyurethanes is an advanced
research domain as it contributes to the design of eco-friendly materials sensitive
to biodegradation phenomena and the progress of green recycling methods®*.

* For correspondence
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Therefore. new materials are required, with improved recycling capability, like
new biodegradable polyurethane foams®. A type of new materials is the bio-based
materials (lignin, starch) whose manufacturing requires awareness of the processing
and material properties of the polymers. But the resulting properties of bio-based
materials should be equal or be better than those of the conventional alternatives’.
The chemical structure of polyurethane, either classical or biodegradable, modifies
during ageing phenomenon. Laborious researches are made in dynamical, tensile,
fatigue tests for controlling the effect of ageing: the Young modulus decrease,
strength decrease, variation of stiffness’. An additional methodology. aiming to
describe rapidly the damping characteristics of the polyurethane material is pro-
posed in the present paper.

The main characteristic of two bodies which collide is the sudden variation of
the kinematical parameters with the high forces development as the direct conse-
quence. With the purpose of estimate these forces, the hypothesis of deformable
bodies is essential. The relative deformation between the two nonconforming
bodies is defined as the distance between the two points outlining the initial con-
tact of the two bodies; this distance increases from zero up to a maximum value
x, .. and after that (when no plastic deformations occur), progressively decreases
to zero and now the collision is finished®. The instant corresponding to the maxi-
mum value of normal approach separates the impact period into two phases, the
compression and the restitution (Fig. 1). The maximum deformation is reached at
the time 7, and therefore the relative velocity between the bodies is zero. A major
parameter used in the study of impact is the coefficient of restitution ¢, defined as
the negative ratio between the after and before relative velocities for the centric
collision of two balls®;

e == (¥, —v)/(¥,—7). (1)
When one of the bodies is immobile, for instance, the body 2 in Fig. 1, and
takes the form:

e ==V /v 2)

The study of impact requires applying the momentum theorem:
my, +my, =my, +my, (3)
which, together with relation (1), allows for finding the post impact velocities of
the bodies. A more difficult task is to obtain the relation of variation of the impact

force during the period of collision. Supplementary hypothesis concerning energetic
aspects must be considered.
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Fig. 1. Variation of normal approach of the bodies during the impact period
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Fig. 2. Phase diagram

A first model was proposed by Hunt and Crossley'® who regarded the impact-
ing balls as viscoelastic bodies and proposed the impact force as the sum of an
elastic term:

F = Kx" (4)
and a viscoelastic damping term:
Fy=cx. (%)

Hunt and Crossley show that the model depicted by a hysteresis curve closed
in origin needs a coefficient ¢ proportional to the elastic force, thus the damping
force takes the form:

F. =iy (6)

where the constant % characterises the damping phenomenon. Another model is
due to Lankarani'' who considers a viscoelastic impact model and equals the lost
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energies by damping during the two phases of the collision phenomenon. For the
y coefficient proposes the relation:

x=3K(1 —c?)/(4v,). (7

The Lankarani model is appropriate only for collisions with ¢, > 0.9, known
also as quasielastic collisions. Following the Hunt and Crossley model, Flores'
builds the viscoelastic model of impact accepting that, the path of the characteristic
point in the phase plane is a quarter of ellipse both for compression and restitution
periods, with the same major axis but different minor axes. as represented in Fig.
2. He finds for the damping coefficient the next expression:

1 =8K(1 —e)(5cv,). (8)

The Flores model is suitable for the whole range of the coefficients of restitu-
tion, 0 <e <1.

The present paper proposes a model for the impact between a rigid punch
and a foam type material, by broadening the Flores model. For the experimental
researches, polyurethane foam was used. If for the Lankarani and Flores models,
the impact of metallic materials led to negligible dimensions of the contact area,
for the polyurethane the deformations are comparable to the dimensions of the
body. Another significant difference between the two types of materials is the fact
that, for the static contact, the loading and unloading characteristics are identical
for metals but for the polyurethane foam', the two curves differ: the loading is
performed via a power law curve described by:

F =3 (9)
With the o exponent:
1<a<3/2 (10)
while the unloading is accomplished in the elastic domain obeying the relation:
F =Cx", (1)

The dynamic model for the impact is presented next. The impact force results
from an elastic force, relation (9) to which a damping force, relation (6) is added.
For the restitution phase, the exponent has the value’® o, = 3/2:

Bl s b AR 2

F=={ n .
Cxor—yxtax, 1 U1,

(12)

When the compression phase ends, the velocity is zero and the deformation
reaches the maximum value x__ . The continuity condition imposed to the force
at the instant 7_ is expressed as:

Cx “«“=Cx_ %, (13)

1" max T max
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The Flores hypothesis is considered and the characteristic point moves in the
phase plane on quarter ellipses. The velocity of the ball before impact is denoted
by v, and the variation of the modulus of velocity for the two phases results under
the form:

\7 ]fxx"mz,OSISI
1'(:(): 0 (/ ).’ [ (14)
€ li(x/xmax)-' 'rc S!SIf

The energy theorem is applied for the compression phase:
gt oy ol X i 3 1 5
[ cotan+ [ w1 = (6 X ) dy = 5 g (15)

and for the entire collision period:

_‘:"m Cix™dx + 'f(: xX Va1 = (0/ X ma ¥ dx + J'\O Cxde

) 4 b (I6)
+_[‘O ._ xxaicrv(l 14‘(,\'/)('""“)- = %(1_6;)}7’”6

The next notation is introduced:
Ko)=]',&(1 - )2 dE=1/2 B(w2, 1), (17)

where B(x. y) is the Euler integral of first kind. Taking into account relation (13),
equations (15) and (16) provide the following equations:

C o, 1 2
L}I L+ m!(ao]xm-;' =S mv; (18)

C, i 2 +1 - 2
+yvol(ay ) |xit —Cp =B 4y xpilevol(oy )=—my(l-¢, 9
|:ot|+1 x vol( 1)} ]a2+l X ol (o) 5 o ) (19)

The above equations form a system of equations with x___and y as unknowns.
Solving the first equation with respect to  and introducing it in the second equa-
tion, a transcendent equation as function of x__ is obtained:

o, +1 o+
lcrnnﬁ By Tt I(a,) = | Fmax | Fmax fo )cr C (20)
2 (o) o, +1 o +1 f(ay)

The unknownx__ depends on C|, a, v, and ¢ .. With these parameters stipulated,
from equation (20) x__is obtained by applying a numerical procedure. Next, via
equation (18), the damping coefficient y is found:
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EXPERIMENTAL

Equations (20) and (21) reveal that a complete characterisation of the impact phe-
nomenon requires precising the values of the parameters C. a,, v, and ¢,. The values
of these constants should be given as results from experimental work since other
independent equations cannot be formulated. The experimental set-up designed for
the study is presented in Fig. 3. The main part of device is a mathematical pendulum
built from a prismatic body and two identical steel balls, attached symmetrically.
A piezoelectric 3-axis accelerometer sensor'* (range 3g) is mounted on a face of
the prism and the output signal is the input for a digital oscilloscope Tektronix
TBS1000. The pendulum is at rest and the target, a prismatic polyurethane body
is brought into contact to it (Fig. 3). The test consists in moving the pendulum in
the vertical oscillation plane up to a mark from the working board, then letting it
free to perform a succession of collisions with the target by one of the steel balls.
In Fig. 4 is presented the schematics for the calculus of the initial impact velocity
v, and the coefficient of restitution c,. To this end. at initiation of the test, the bob
of the pendulum (prism and balls) is moved with an angle 8 with respect to the
vertical and with a distance d on horizontal direction, respectively. The massless
parallel wires materialise the rod of the pendulum.

Fig. 3. Experimental pendulum
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Fig. 6. Pendulum after rebound
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Denoting by L the length of the rod, the angular elongation is given by:
@ = asin(d/L). (22)
The position on vertical of the centre of the bob is denoted / and results as
function of distance d.
h=L-Lcos8=L-L(l1-sin? )2 =L-L(1 -(dLP)*=L-(L*-d)? (23)
The energy theorem is applied for the moments of launching and impact
initiation:
mgh = mv*/2. 24)
The initial impact velocity results from equations (23) and (24):
v, =v=(2gh)\"* = (2g(L — (L* - &))"~ (25)
After impact, the centre of the bob performs the maximum rebound described

by d with respect to the initial un-deformed surface of the target, and the post-
impact velocity can be calculated in a similar manner as:

vhi=(2g(L*—d?*)))2, (26)
Now, with known velocities v and v'. the coefficient of restitution can be

obtained:

5= (1 ,(1,(@/”:)1?)1? _ @7
(] - (| V(a{fL):)J-_)x_

A steel needle bonded to the prism moves along a ruler and permits the esti-
mation of the distances d and d' (Fig. 5). The bob is brought into contact with a
plane surface stopper (Fig. 6), for the launching position. The difference between
the needle indications for start and rest positions (Fig. 5) gives the d parameter.
A series of launchings are performed for a qualitative estimation of the rebound
position. In the vicinity of this place, a video camera is set and the motion of the
bob is recorded after launching it from a stipulated position d. The movie is split
into frames and the instant when the sense of the motion changes is precisely
identified and now the ¢’ parameter is accurately estimated.

RESULTS AND DISCUSSION

The characteristic curve for quasi-static loading-unloading of a polyurethane foam
can be obtained'’; the test-rig and the methodology refer to two situations: flat and
spherical punch. For the spherical punch, the steel balls @ = 40 mm are the same
as the ones used in the bob of the pendulum. The experimental variation normal
force-normal approach between spherical punch and parallelepiped foam is given
in Fig. 7 in Cartesian coordinates and in Fig. 8 in logarithmic coordinates.
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Fig. 7. Force-deformation curve for loading test (Cartesian coordinates)
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Fig. 8. Force-deformation curve for loading test (double logarithmic coordinates)

The experimental points from Fig. 8 lay on a straight line and confirm a de-
pendency of the form:

InF=InC, +a lnx. (28)

Equation (28) expressed in Cartesian coordinates is:
F=Cpxo. (29)
The above expression was accepted as hypothesis in relation (9) and thus, the
experimental work validates the hypothesis of the model. The parameters C and

a, are identified after applying the least squares method to the data in Cartesian
coordinates. The objective function is:

ﬂCl’ 0'1): zk (Qkfcwsﬁm):' (30)

The condition of minimum is imposed to function (30), mathematically ex-
pressed as a system:
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The explicit form of the system (31) is:

-2 Y 0,88 —C‘,Zéf“‘}=0
k k

(32)
20| 3 .C,64 Ind, - O,8;" Inﬁk} =10
k k

The numerical solving is the only possible method in solving the system (32)
and a guess value is required. Since there is the possibility of multiple solutions,
this requirement is a difficult task. Additionally. for the parameter C', the single
information is C, > 0: for «, the range is known, according to equation (10). To
surpass this difficulty, the notice that the first equation of the system (32) can be
solved with respect to C, is applied. Replacing this solution into the second equa-
tion of the system, the next transcendental equation results:

Y 08
)= ZZ&’“ 3, Ind, — Zoﬁ % 1ng, (33)

Function (33) plotted for the domain [1-2.5] is presented in Fig. 9 where a
unique solution «, is obvious. This solution is used in finding the constant C, from
the first equation (32) and then the interpolation curve of the experimental data is
presented in Fig. 10.
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Fig. 9. Numerical solution for the exponent of the loading curve
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Fig. 10. Experimental data and the power interpolation curve

For the experimental data (Fig. 10), for loading characteristic, the values of
the parameters are found a, = 1.32, €, = 2510 N/m“'. The impact initial velocity
and the coefficient of restitution are calculated for the length of the rod of the
pendulum L = 1 m and the displacements @ = 0.25 m, d’ = 0.203 m, resulting v, =
0.8 m/s and ¢, = 0.81. From equation (20), the maximum approach is calculated
x_ = 0.024 m and the coefficient of damping results applying equation (21) is
x = 1395 (N/m*"")/(m/s).

The definition of velocity:

v = dx/dr, (34)
conducts to the differential equation:
dr = dx/v(x). (35)

Using equation (14), relation (35) is integrated for the compression phase and
the value of 7_is obtained:
(= [ deiv(x) = [ de/(y(1 - (efx,, )2 = mx [(2v,) = 0.047 s. (36)
0 0
In an analogous manner, for the restitution phase, the time of rebound is
found as:
0 0
1= [ dxivx) = - [ delle vl - (W, )2 = mx,, (26, = 0.059s.  (37)

max max
X Tmax

Therefore, the total impact period is:

t=t +t=mx_(c+ 1)(2v,)=0.1065. (38)

max



At this stage. the expression of the force acting in contact given by equation
(12) is fully known. The equation of motion of the bob is a nonlinear differential
equation of second order:

Cl v, Osrst

m=— T : (39)
C =y, SUEL

Equation (39) is integrated using the Runge-Kutta IV method'®. The time
variations for approaching, velocity, acceleration (and force, implicit) are found
(for the mass of the bob m = 0.75 kg) and shown in Figs 11-13. The phase plane
is plotted in Fig. 14 and the hysteresis curve resulting from the force-deformation
characteristic — in Fig. 15.
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Fig. 11. Approach versus time during contact period
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Fig. 12. Impact velocity during contact period
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In Fig. 14, beside the characteristic curve from the phase plane obtained by
the integration of the equation of motion, the velocity from the Flores model* was
also plotted. It is noticed that for the compression phase (v > 0) there is excellent
correlation but for the restitution phase (v < 0) there is an observable difference.
The consequence of this difference can be also noticed in the graph of variation
of acceleration (Fig. 13). where a slope discontinuity (marked by an arrow in the
plot) is present.
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Fig. 13. Acceleration during contact period
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Fig. 14. Phase plane (black-solution of equation of motion: red-Flores model)
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Fig. 15. Force-deformation plot. evidencing the hysteresis loop (black-static)

In order to validate the theoretical model, the experimental signal given by
the accelerometer sensor was received by the digital oscilloscope (Figs 16 and
17), and saved as matrix. The experimental points for the first impact, the signal
from Fig. 17, were interpolated using the theoretical signal given by the equation
of motion. The two results are presented overlapped in Fig. 18 and an excellent
approximation is obtained for the compression phase but also a good agreement for
the restitution phase, which can be improved using a more sophisticated method
for the characteristic curve.
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Fig. 16. Signal obtained at the oscilloscope for the first four collisions
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Fig. 18. Experimental data interpolated with the theoretical signal

CONCLUSIONS

The paper proposes a theoretical impact model for the foam type materials. The
model considers the hypothesis that the impact force has two components: an elastic
one and a viscous damping one. The Flores assumption is employed, the path of
the characteristic point in the phase plane follows elliptic quarter for both impact
phases. For the quasi-static loading the power-law dependency between force and
deformation is accepted. Based on these hypotheses, a model is developed, allow-
ing for finding the maximum approach, the coefficient of damping and the impact
time and additionally. the hysteresis curve closes in origin. An experimental set-up
was designed and employed, consisting principally in a mathematical pendulum
with attached accelerometer. The device permits the estimation of the amplitudes
during the impact used in calculating the initial and final impact velocities and
implicitly of the coefficient of restitution which are required by the theoretical
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model. From experiments and additional calculus, all the parameters involved in
the nonlinear differential equation of the model describing are known. This equa-
tion is numerically integrated and permits representing the time dependencies for
the approaching between bodies. contact velocity and acceleration. Next, these
relations are used for plotting the characteristic curves from the phase plane and
the force-deformation curve with hysteresis loop emphasised. The output signal
from the accelerometer is collected by the memory oscilloscope and thus the
impact force variation in time is experimentally obtained. It is observed that the
curve generated with the theoretical model interpolates in a very good manner the
experimental data.
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