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ABSTRACT

Most of the theoretical and experimental works on the study of friction units 
are based on the classical hydrodynamic theory of lubrication. In the present 
study, a system of equations for hydrodynamic problems that take into account 
the processes of heat exchange between a lubricant and a solid is given. To mod-
el non-Newtonian properties of modern lubricants, a rheological model of the 
lubricant was used. A series of comparative calculations for evaluating the per-
formance of hydrodynamic units, taking into account their thermal loading, is 
performed on the example of calculating the dynamics of a flexible asymmetric 
rotor. The results of the calculations showed that the temperature difference be-
tween the rotor bearings was 15-18 degrees. The results of theoretical studies have 
shown good agreement with the results of experimental studies.
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AIMS AND BACKGROUND

The use of modern high-grade lubricants is the key factor for reducing friction 
losses in tribo-units and improving the power efficiency of an engine as a whole. 
The majority of hydrodynamic friction units of engines are heavy-loaded; i.e., 
they are loaded by forces, whose magnitude and direction vary in time.
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A problem of calculating these tribo-units is based on the classical hydro-
dynamic lubrication theory, which describes the behaviour of a Newtonian fluid 
in a thin lubricating film that separates the tribo-unit surfaces. However, state-
of-the-art lubricant production methods, as well as the permanent improvement 
and development of new antiwear and other additives, lead to the impossibili-
ty of describing the behaviour of lubricating fluids based on the foundations of 
the lubrication theory. One of the assumptions of this theory as a basis for cal-
culating heavy-loaded tribo-units is that the behaviour of a lubricant obeys the 
Newton-Stokes law, which implies the following linear dependence of tangential 
stresses on the shear rate1:
	 t = m⋅g.,	 (1)

where t is the shear stress; m is the Newtonian viscosity; and g. is the shear rate.
In this dependence, the dynamic (Newtonian) viscosity m serves as the coeffi-

cient of proportionality; this viscosity depends on the temperature and on the pres-
sure. In this case, the fluid is called Newtonian or perfectly viscous (purely viscous).

The majority of up-to-date high-grade lubricating oils, whose behaviour 
does not obey condition (1), are non-Newtonian fluids. In the general case, by 
non-Newtonian behaviour is meant any anomalies observed during the flow of 
fluids. In this case, there is a need to develop calculation methods based on new, 
non-Newtonian models of the rheological behaviour of the lubricant.

There are various models of viscoelastic fluids1, among which the Maxwell 
model is the best known. In this model, fluids are called Maxwell fluids (visco-
elastic Maxwell fluids), and their rheological behaviour is described by the fol-
lowing equations:
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where txy and tyz  are the stress tensor components;  l is the relaxation time, which 
characterizes the lag of changes in the tangential stresses relative to changes in 
the shear rates; yVx ∂∂  and yVz ∂∂  are the gradients of the velocities of a 
lubricant unit volume; y  is the coordinate in the direction of the normal to the 
bearing surface; t  is the time; ),,( 2

* IpÒm  is the dynamic viscosity coefficient 
(non-Newtonian viscosity), which, in the general case, depends on the lubricating 
film temperature ( )tzyxT ,,, , on the pressure ( )zp ,j  and on the second invari-
ant of the shear velocities

	 ( ) ( )22
2 yVyVI zx ∂∂+∂∂≈ , 2I=γ . 	 (3)

The rheological model of a viscoelastic fluid was used in works of Paran-
jpe2, Zhang et al.3 Den and Elrod4 constructed a general theory for pseudoplastic 
non-Newtonian fluids with constant characteristics, whose viscosity was a func-
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tion of the second invariant of the deformation rate tensor and determined by the 
following law:

	 m* = k*g
. n–1	 (4)

where k* is the measure of the consistency of the fluid and n is the exponent, 
which characterizes the degree of non-Newtonian behaviour. For pseudo-plastic 
fluids n < 1.

The use of the power law to describe the rheological behaviour of various 
motor oils requires values of n and k* to be determined in each particular case, 
which, unfortunately, involves difficulties. However, Gecim has shown5 that the 
use of the power law and its modifications can yield erroneous results, i.e., an un-
derestimated viscosity at high shear rates (106 s–1) or an overestimated viscosity at 
low shear rates (103 s–1). At low shear rates, the value of the viscosity corresponds 
to the value of the first Newtonian viscosity m1; with an increase in the shear rate, 
the viscosity tends to the value of the second Newtonian viscosity m2. The de-
pendence of the viscosity on the shear rate proposed by Gecim was successfully 
used in Refs 2, 6, 7. In these works, information on a method for determining the 
second Newtonian viscosity is lacking.

Based on experimental studies on various motor oils8, a rheological model of 
the viscosity of oil was proposed, in which the viscosity was a power function of 
the temperature, pressure, and shear rate simultaneously. A method for determin-
ing the second Newtonian viscosity using up-to-date tribological equipment was 
also proposed.

Along with this, when studying the efficiency of tribo-units, thermal process-
es that occur in heavy-loaded fluid-lubricated bearings are of great importance. 
They are usually considered based on a solution of the generalized equation of 
energy (heat transfer) for a thin film of a viscous incompressible fluid, which 
separates two arbitrarily moving surfaces. This equation allows for both convec-
tive heat transfer by the lubricant and heat transfer due to thermal conductivity. 
In this case, the temperature distribution ),,,( tzyxT  in the lubricating film is 
described by the following equation9–11:
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where r  is the density of the lubricant; 0c  and 0 l  are the specific heat and the 
thermal conductivity of the lubricant, which are usually assumed to be constant; 

yx VV ,  and zV  are the components of the velocity vector of the unit lubricant 
volume located between the joint surfaces; and D  is the dissipative function de-
termined by the following approximate expression:

	 D = mI2.	 (6)
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The three following approaches to the integration of Eq. (5) can be used, 
depending on applied assumptions on the temperature distribution in a thin lu-
bricating film: thermo-hydrodynamic (nonisothermal), adiabatic, and isothermal 
distribution.

In the adiabatic approach, it is assumed that no temperature changes across 
the lubricating film occur and that the journal and the bearing are perfect heat 
insulators. A calculation temperature T = T(x, t) averaged over the bearing width 
is introduced; the substitution of this temperature in Eq. (5) yields the differential 
equation for the temperature distribution along the coordinate x. Since, in this ap-
proach, heat removal to the journal and the bearing is not allowed for, calculated 
temperatures are highly overestimated, which reduces the validity of the results.

In the isothermal approach, it is assumed that the calculation (equivalent) 
current temperature Teq = Teq(t) is the same on all points of the lubricating films. 
This temperature is a fairly inertial parameter and determined, when solving the 
equation of heat balance, which reflects the equality of cycle-averaged values of 
the heat dissipated in the lubricating film and the heat removed by the lubricant 
flowing out through the bearing ends.

In the thermo-hydrodynamic approach, the temperature is assumed to change 
in all directions10,12, including across the lubricating film. In this case, the bound-
ary conditions are best fit for real thermal processes. This approach yields infor-
mation on the local characteristics of the temperature field over the lubricating 
film, i.e., maximum and instantaneous average values of the temperature, as well 
as zones of increased thermal load.

Many researchers attempt to allow for the most realistic properties of lu-
bricants, as well as a number of design, process, operational, and other parame-
ters, which affect the operation of tribo-units. The significance and topicality of 
the thermo-hydrodynamic lubrication problem for heavy-loaded sliding bearings 
with allowance for the rheological behaviour of a lubricating fluid increase.

Additionally, researchers should take into account the mutual influence of 
bearings on each other. For example, in paper13 authors presented an algorithm for 
solving the problem of rotor dynamics. The authors take into account the flexibil-
ity of the rotor. 

However, experimental studies14,15 had shown that the bearings of the turbine 
and compressor operate under different thermal conditions. The temperature differ-
ence for the turbine and compressor bearings can be 15–30°С. Studies on thermal 
aspects of bearings considered at different bearing temperatures are very limited.

Consequently, the evaluation of the thermal state of each bearing and ac-
counting their thermal state in the calculation of the rotor dynamics is an urgent 
task. At the same time the position of the rotor relative to the bearing must be 
determined in each time point. The flexibility of the rotor must be taken into 
account. The lubrication regime in the thin layer must be taken into account too.
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METHOD OF SOLUTION. PROBLEM FORMULATION

The scope of problems in the theory of hydrodynamic tribo-units is characterized 
by the set of methods for solving the following interrelated problems.

(1) Solving equations of motion to determine the trajectory of the journal 
center in the bearing.

(2) Determining pressures in the lubricating film, which separates the fric-
tion surfaces having imperfect geometry with an arbitrary law of their motion 
with allowance for properties of the lubricant.

(3) Assessing the temperature state of the ‘shaft - lubricating film - bearing’ 
system with allowance for properties of the structural materials.

(4) Determining and optimizing geometrical and hydro-mechanical charac-
teristics of the bearing.

The complex solution of these problems is a key stage in improving the reli-
ability of tribo-units and developing friction units that meet current requirements. 
However, this solution involves substantial difficulties, since it requires precise 
and highly efficient calculation methods and algorithms to be developed.

The result of the modeling of heavy-loaded fluid lubricated bearings is usu-
ally assessed by the calculation of hydro-mechanical characteristics, determined 
during a bearing loading cycle. The minimal permissible lubricating film thick-
ness and the maximum of permissible hydrodynamic pressure are commonly 
used as criteria for the efficiency of tribo-units16–18.

A solution of the above-listed problems in isothermal formulation with al-
lowance for determining the lubricating film thickness is presented in Refs 7, 8, 
17. However, in many cases of calculation, there is a need to find a temperature 
distribution across the lubricating film, which is only possible in the thermo-hy-
drodynamic approach. This approach allows one to consider both the non-Newto-
nian behaviour of lubricating oil and the geometry of the friction surfaces, which 
restrict a thin lubricating film.

Along with this approach to determine the temperature distribution in the lubri-
cant layer, the use of the finite volume method (FVM) is of great interest. The applica-
tion of this method makes it possible to obtain more accurately the temperature values 
in each lubricating layer. In this case, the properties of construction and lubricants, 
as well as the boundary layer on the surfaces of friction mates are taken into account.

The main provisions of the FVM are conveniently stated by considering the 
‘standard’ balance equation of a certain value j in the control volume W, which is 
bounded by a surface with an external normal n:

	 ∫∑ ∫∫
ΩΩ

Ω=⋅+Ω
∂
∂ Qddsqnd

t k Sk

ρφ , φαφρ ∇−= Vq


 , 	 (7)

where q  is the flux density vector of j , which includes the convective and diffu-
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sion components, Q is the distribution density of bulk sources; V


 is the velocity 
vector; r is the density of the medium; a is the diffusion coefficient. The j could 
include, for example, the internal energy of fluid, the additive concentration; the 
kinetic energy of turbulence, etc.

In the limit, with volume we compress to a point, based on the Ostro-
gradsky-Gauss formula, this equation can be rewritten in differential form: 
∂rf / ∂t + ∇ q→ = Q. 

Calculated areas are divided into small control volumes, for each of which 
the balance ratio (7) is recorded. One nodal point is located in each center of con-
trol volume. When solving three-dimensional problems with a complex geometry 
of the regions, in most cases, the cells of the computational grid are used as a 
control volume.

There are two options for solving problems with the help of the FVM:
1. The boundaries of the control volume coincide with the boundaries of the 

element.
2. The faces of the control volumes pass through the centers of the faces of 

the elements, into which the region is divided. The required variables are stored in 
the vertices of the elements. A control volume is built around each vertex.

FVM has several advantages:
• the main quantities are stored throughout the region, for example, system 

energy, mass, heat flux, and so on. This condition is satisfied even for a coarse 
computational grid;

• the calculation speed is high. Many estimated values can be calculated by 
splitting a region into elements, and there is no need to calculate them on each 
time step;

• the method is easily used for problems with complex geometry and curvi-
linear boundaries. The ease is due to using different geometric types of elements 
- triangles, polygons.

BASIC EQUATIONS 

The methodology of the dynamics calculation of the flexible non-symmetric rotor 
on the multi-layer sliding bearings is based on methods of integrating the motion 
equations of movable elements of the bearings and rotor. The motion equations in-
clude forces that are associated with the presence in the system ‘rotor – bearings’ 
of lubricating layers having substantially nonlinear characteristics.

The nonlinear reactions of the lubricating layer are determined by integrating 
the hydrodynamic pressures diagram. These diagrams are calculated on the each 
time step by numerical integration of the differential equation of Reynolds.

The hydrodynamic pressure field in a thin lubricating film is usually deter-
mined using the universal Elrod equation for the degree of filling of the clear-



991

ance with a lubricating fluid19,20 or the generalized Reynolds equation10,17; for a 
non-Newtonian fluid, we write the generalized Reynolds equation as follows:
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where j and z  are the angular and axial coordinates; r– = r / r0 is the dimension-
less density; r0 is the density of the Newtonian fluid; p– = (p – pa )y

2 / m0w0, y = 
h0 / r2, z

– = z / r2, –a ≤ z
– ≤ a, t– = w0t are the dimensionless hydrodynamic pressures, 

relative radial clearance, coordinate along the bearing width, and time; h0 is the 
radial installation clearance; a = B / D is the relative bearing width; m0 is the char-
acteristic viscosity of the lubricant; pa is the atmospheric pressure; B, D = 2r2, r2 
respectively, are the width, diameter, and radius of the journal; w–21 = (w2 – w1) / w0 
is the dimensionless angular velocity of the journal; h– is the dimensionless lubri-
cating film thickness. h– and its derivatives ∂h– / ∂t– are determined as follows:
	  ( ) ( ) ( ),coscos,cos1 δϕδχδϕχδϕχ −−−−=∂∂−−= 

thh 	 (9)

where χ  is the relative eccentricity and d is the phase angle of the line of centers);

∫=
h

k
k ydy

0

*µφ , k = 0;1;2, m–* is the dimensionless non-Newtonian viscosity of

the lubricant, which depends on the shear rate, on the temperature, and on the 
pressure; y  is the dimensionless coordinate across the lubricating film.

Equation (8) was integrated using the multigrid method under the Swift–
Stieber boundary conditions with account for the presence of lubrication sources 
(holes and grooves) on the friction surfaces21: 

	  0),();,2(),(;0),( ≥+==±= zpzpzpazp ϕπϕϕϕ 	

	 on sz Ω∈),(ϕ spzp =),(ϕ *...2,1 SS = ,,  

where sW  is the lubrication source area, in which the pressure is constant and 
equal to the feed pressure sp , and S* is the number of lubrication sources.

The dependence of the viscosity of the lubricant on the shear rate and on the 
pressure was represented as follows8:
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where n is the parameter that characterizes the degree of non-Newtonian be-
haviour and b is the pressure coefficient of the viscosity of the lubricant, which 
depends on the temperature.
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In accordance with model (10), over portion 1 (I2 < 104  s–1 ), oil behaves as a 
Newtonian fluid with the viscosity m1(Teq, p). Over portion 2 (104 s–1 < I2 < 106 s–2), 
the viscosity decreases following the power law. Over portion 3 (I2 > 106 s–1), oil is 
considered as a Newtonian fluid with the viscosity

 
m1(Teq, p).

The volume flow rates of the lubricant through the sections with the unit 
length along the coordinates x and z are written in the following form:

	 ∫=
y

xxy ydVq
0

; ∫=
y

zzy ydVq
0

. 

EQUATION OF ENERGY FOR LUBRICATING FILM IN RADIAL 
BEARING

Equation (5) was written in the following dimensionless form10,12:
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where 0TTT =  is the dimensionless temperature in a point of the lubricating 
film; 0T  is the characteristic temperature;
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Pe = r0r
– c0w0D0

2 / l0 is the Peclet number; kT = r0r
– c0T0y

2 / (w0m0), D0 = 2⋅h0. 
To simplify the solution of the problem, we considered the two-dimensional 

equation of energy. In order to substantiate a possibility of this simplification, 
heavy-loaded bearings with various ways of lubricant supply from the sources 
(grooves and holes) located on the z = 0 axis were considered. The experimental 
results have shown that, with these ways of lubricant supply, changes in the tem-
peratures on the surfaces of the bushing and the journal, which contact the lubri-
cating film, along the bearing width are not so significant as their changes along 
the coordinate j (Ref. 22).

It is assumed that the thermal state of the lubricating film is fairly completely 
characterized by the temperature distribution ( )tyzTtyT j ,,,),,( jj =  in a sec-
tion zj 

. With allowance for the above-made assumption on the constancy of the 
temperature along the z  axis, Eq. (11) for T  is written as follows:
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On each step of calculating the trajectory of the journal center, when the Reyn-
olds (Elrod) equation and the equation of energy are integrated, we calculated the 
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heat, which flows from the lubricating film per unit of surface of the bushing Q1  (y 
=  0) and the journal Q2  (y = h), i.e., the unit of heat flows in the section zj 

:
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Upon completion of the loading cycle, the unit of heat flows from the lubri-
cating film to the bushing and journal averaged over the cycle duration ct  were 
calculated with allowance for (13):
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The temperature distribution T1 (j, R, t) in the bushing, where R is the radial coor-
dinate, is determined by solving the equation for the transient heat flow; in cylindrical 
coordinates and the dimensionless variables, this equation is written as follows:
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where R– = R / r2; T
–

1 = T1 / T0; a
–

1 = l1 / (c1r1r2w0) is the dimensionless coefficient of 
heat transfer from the bushing surface to the environment; and r1, c1, l1 are the 
density, specific heat, and specific thermal conductivity of the bushing material.

To calculate the temperatures in the bushing, we introduce the calculation 
system of coordinates Ox1y1z1 and the dimensionless variables y–1 = (R – r1)(r3– r1) 
= (R– – 1), r–3 = r3 / r1, where r1 and r3 are the calculation radii of the inner and outer 
surfaces of the bushing.

With allowance for the transition of the dimensionless variables, Eq. (14) is 
written in the following form:
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The scheme proposed in Ref. 2 seems promising for calculating the journal 
temperature; in this scheme, the journal is considered as a thermal element with 
a uniform temperature field. In this case, the calculation equation for the dimen-
sionless journal temperature T–2 is written as follows:

	 )( 22
*
2

2
cTTQ

td
Td

−−= ∑ α ,	 (16)

where T–2 = T2 / T0; T
–

C = TC / T0; Q
–*2 = Q*2 / (m2c2w0); a–2 = a2S2 / (m2c2w0), m2, c2 

are the mass and specific heat of the journal; a2 is the average coefficient of heat 
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transfer from the journal to the environment; S2 is the area of the heat exchange 
surface of the journal; TC is the ambient temperature; and ∑Q*2 is the total load-
ing-cycle-averaged heat flow from the lubricating film to the journal.

Because of substantial thermal inertia, the journal and bushing respond only 
slightly to any thermal changes in the lubricating film during the loading cycle tC, 
which is equivalent, e.g., for internal combustion engines, to two revolutions of a 
crankshaft.

EQUATION OF ENERGY FOR LUBRICATING FILM IN RADIAL 
BEARING

Under the periodically applied loads, the solution of the entire problem was con-
tinued until the moment, when the calculation coordinates of the journal center  
U–(t) = ( x–2, y

–
2, z

–
2); the pressures, and the temperature fields in two next loading 

cycles (periods) coincide, i.e., the following conditions that substitute the initial 
conditions are satisfied:

	 );()( cttUtU +=   ),,(),,( cttzptzp += ϕϕ ; 
),,(),,( cttyTtyT += ϕϕ ; ),,(),,( 11 cttRTtRT += ϕϕ ;  ( ) )(22 cttTtT += .

	 (17)

The boundary conditions, under which Eqs. (12), (15), and (16) of the heat 
subproblem were integrated, are formulated as follows. For the temperatures of 
the lubricating film and the bushing, the conditions of periodicity in the circum-
ferential direction are true:

	 ),,2(),,( tyTtyT πϕϕ += ;  ),,2(),,( 11 tRTtRT πϕϕ +=

On the outer bushing surface, the following free convection hypothesis is 
assumed to be true:
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On the surface, which is common for the lubricating film and the bushing, the 
following conditions of continuity of the heat flow (conjugation conditions) are as
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On the surfaces of the lubricating films that are common for the bushing and 
for journal surfaces, the following temperature equality conditions are assigned:

	 );,0,(),0,( 11 cttyTtyT −=== ϕϕ ).(),1,( 2 cttTtyT −==ϕ 	

The general scheme for solving the problem is represented in Refs 23, 24.
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RESULTS AND DISCUSSION

During the first stage of calculation for each bearing lubricant layer, the calcula-
tion of temperature fields was performed. Mesh creation in ANSYS meshing was 
performed for the fluent solver. At the same time, the sweep method was used to 
create the mesh of the model, which allows building a computational mesh based 
on prismatic elements using the operation of pulling elements of one layer along 
a certain axis. This method can be used for a class of geometric models, obtained 
as a body of rotation / pulling. In this case, the choice of the source surface and 
the target surface was made manually. This is because the source surface and the 
target surface have common nodes or edges. 

The prismatic layers were built automatically using the sweep bias type op-
tions, which determine the direction of thickening, and the sweep bias option, 
which determines the degree of thickening of the elements. Also, the Inflation tool 
was used to create a computational grid with thickening layers of prismatic cells 
near the surfaces of a geometric model. Smooth transition method was used in 
this tool. Smooth transition uses the size of the grid non-prismatic element in the 
model to calculate the thickness of the last prismatic layer and the total thickness 
of all the prismatic layers. 

The main variable parameters of this method are as follows:
•  Transition ratio – shows how many times the thickness of elements in the 

last prismatic layer is less than the characteristic cell sizes of the next, non-pris-
matic layer. In our case, the value is 5×10–2.

•  Maximum layers – sets the maximal number of prismatic layers created. 
The number of elements in the boundary layer was assumed to be 20.

Fig. 1. Computational grid of a geometrical fluid bearing model, created taking into account the 
internal prismatic layers
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•  Growth rate – determines the change in the thickness of the next prismatic 
layer with respect to the thickness of the previous one. In our case, the value is 1.2. 
Four input lubrication sources were provided, when building the model.

An example of a breakdown is represented in Fig. 1.
To calculate the thermal fields in the ANSYS mathematical model, the fluent 

module was used. In the model, the energy equation was connected, necessary to 
describe the variable temperature field. The viscosity model was chosen turbu-
lent, with the k-epsilon realizable turbulence model. Figure 2 shows the calculated 
3D model, in which the inputs are highlighted in blue and the outputs in red. The 
calculations were carried out under the boundary conditions indicated in Table 1.

An example of calculating the temperature for one of the lubricant layers is 
shown in Fig. 3.

The obtained temperature values were used in the further calculation of the 
dynamics of the flexible rotor as boundary conditions.

The rotor was represented as five masses interconnected by flexible massless 
rods. The scheme of the separation of the rotor into parts is shown in Fig. 4. The 
system of equations of motion of the rotor elements are integrated by the Run-
ge-Kutta method. Variable step integration over time is automatically selected 
by using Merson’s amendment. The position of the rotor in the bearing space 
was considered as a superposition of two displacements. The first one of these is 
the displacement of the undeformed rotor as a rigid whole. The second one is the 
bending of the rotor (Fig. 5).

Table 1. The boundary conditions

Gauge total pressure, MPa Initial gauge pressure, MPa Total temperature, C°
Inlet 0.5 0.45 90
Outlet 0.1 – 50

Fig. 2.  Estimated 3D model of 
Fluent
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Fig. 3. The result of the calculation of thermal fields for a fluid bearing model

Fig. 4. The scheme of the separation of the rotor into parts

Fig. 5. The deformed rotor in plane OXZ

 
 

 

Z 

X 

Axis of the undeformed rotor

Deformed rotor
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The investigations were carried out using the example of calculating the dy-
namics of the flexible asymmetrical rotor of the turbocharger TKR-10 (the radi-
us of the journal of each bearing is 5.98×10–3 m; the internal radial clearance is 
22×10–6 m; the width of the inner lubricating layer is 12.5×10–3 m; the external ra-
dius of the ring is 9.6×10–3 m; the external clearance is 35.75×10–6 m; the width of 
the external lubricating layer is 12.5×10–3; the weight of the each ring is 0.018  kg; 
the rotor mass in the turbine bearing m2 is 0.031 kg; the rotor mass in the com-
pressor bearing m4 is 0.045 kg; the rotor mass is 1.276 kg). Rotor speed was varied 
from 500 to 13000 rad./s. 

The calculating results of the temperature in the turbine bearing Tt and the 
compressor bearing TC are shown in the Table 2.

The trajectories of the moving parts of the rotor were calculated for each 
speed value. For example, in Fig. 6 the trajectory, corresponding speeds of 9000 
rad./s are shown. At the same time, the position of the rotor at each time was de-
termined. Additionally, the position of the rotor at different times was determined. 
Elastic rotor lines corresponding to the speed of 9000 rad./s and different moment 
of time ( niti ...0, = ) are shown in Fig. 7. The change in the vibration amplitude 
of the moving parts jA  of the rotor as a function of its rotational speed is shown 
in Table 3.

Table 2.  The temperature in the bearings

Rotor speed, 
rad./s

Temperature in the turbine bearing, 
°C

Temperature in the compressor 
bearing, °C

500 101,5 91,2
1000 104,4 93,3
3000 121,4 101,9
5000 130,4 117,9
7000 131,4 119,2
9000 145,6 121,7
11000 140,1 120,9
13000 142,7 124,0

Fig. 6. Trajectories of rotor elements (w1 = 9000 rad./s): a) compressor center of mass;  
b) journal center of mass in compressor bearing; c) journal center of mass in turbine bearing; 
d)  turbine center of mass

a)	 b)	 c)	 d)
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The results of the calculation were compared with similar results obtained 
with an isothermal approach.

CONCLUSIONS

The difference in temperature values of the turbine bearings and the compressor 
one ranged from 2 to 12 degrees at different speeds.

With an increase in the speed of the rotor rotation from 3000 to 13000 rad./s, 
the amplitudes of the oscillations of its elements increased by 2.5 times. The shape 
of the oscillations varies from conic to cylindrical. The use of the non-isothermal 
approach to solve equation of energy allows us to clarify the thermal state of each 
lubricating layer. In addition, it makes possible to estimate the thickness of the 
lubricating layer in the bearing. An increase in the amplitude by 2-2,5 times leads 
to a sharp decrease of the lubricant layer thickness. In this case, the lubrication 
mode in the bearing goes from liquid to mixed mode.

Table 3.  Maximal amplitude of the moving parts of the rotor

Rotor speed, rad./s
Aj, mm 500 1000 3000 5000 7000 9000 11000 13000

A1 3.85 2.08 45.2 54.5 68.9 84.3 105 129
A2 0.32 1.76 17.4 23.5 31.4 33.1 38.1 42.1
A4 2.34 1.68 19.3 20.1 27.9 29.8 33.2 38.9
A5 9.3 1.94 50.1 55.8 80.1 91.4 127 172

Fig. 7. Elastic rotor lines (w1 = 9000 rad./s). The position of the rotor axis at different times
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