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NON-CENTRAL PÓLYA-AEPPLI

PROCESS AND RUIN PROBABILITY∗

Meglena D. Lazarova† Leda D. Minkova ‡

Abstract

In this paper we introduce a stochastic process which is a sum of
Pólya-Aeppli process and homogeneous Poisson process and call it a
Non-central Pólya-Aeppli process (NPAP). The probability mass func-
tion, recursion formulas and some properties are derived. As appli-
cation we consider a risk model with NPAP counting process. The
joint distribution of the time to ruin and deficit at the time of ruin is
derived. The differential equation of the ruin probability is given. As
example we consider the case of exponentially distributed claims.
AMS: 60G51; 62P05.
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1 Introduction

In this paper we consider a process which is a sum of two independent
stochastic counting processes. The first one is the Pólya-Aeppli process
(PAP) which is introduced by Minkova (2004), [3] and characterized by
Chukova and Minkova (2013), [1]. It is a compound Poisson process with
geometric compounding distribution and has the following probability mass
function (PMF)

P (N1(t) = i) =


e−λ1t, i = 0

e−λ1t
i∑

j=1

(
i− 1

j − 1

)
[λ1(1− ρ)t]j

j!
ρi−j , i = 1, 2, . . . ,

(1)
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where λ1 > 0 and ρ ∈ [0, 1) are parameters. We use the notation N1(t) ∼
PA(λ1, ρ).

The mean and the variance of the Pólya-Aeppli process are given by
E(N1(t)) = λ1

1−ρ t and V ar(N1(t)) = λ1(1+ρ)
(1−ρ)2 t. For the Fisher index of disper-

sion we obtain

FI(N1(t)) =
V ar(N1(t))

E(N1(t))
=

1 + ρ

1− ρ
.

The second process, denoted by N2(t) is the homogeneous Poisson pro-
cess (PP) with parameter λ2 > 0, and PMF

P (N2(t) = i) =
(λ2t)

i

i!
e−λ2t, i = 0, 1, . . . (2)

We suppose that N1(t) and N2(t) are independent and consider the process
N(t) = N1(t) + N2(t). The probability generating function of the process
N(t) is given by

ΨN(t)(s) = e−λ1t(1−ψ1(s))e−λ2t(1−s), (3)

where

ψ1(s) =
(1− ρ)s

1− ρs
(4)

is the probability generating function of the shifted geometric distribution
with success probability 1− ρ < 1, denoted by Ge1(1− ρ).

Definition 1 The process N(t), defined by the probability generating func-
tion (3) is called a Non-central Pólya-Aeppli process. We denote N(t) ∼
NPAP (λ1, λ2, ρ).

In Ong and Lee (1979) [4] the Noncentral negative binomial distribution
arises as a model in photon and neural counting, birth and death processes
and mixture models. It is defined as a sum of two independent random
variables, one that is negative binomial and another one, Pólya-Aeppli dis-
tributed. This motivated us to give the name Non-central Pólya-Aeppli pro-
cess for the defined process N(t). The dividend problem for the compound
Poisson risk model was considered in [5].

The probability mass function of the Non-central Pólya-Aeppli process
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N(t) is given by

P (N(t) = i)

=


e−(λ1+λ2)t, i = 0

e−(λ1+λ2)t

 (λ2t)i

i! +

i∑
j=1

(λ2t)
i−j

(i− j)!

j∑
k=1

(
j − 1

k − 1

)
[λ1(1− ρ)t]k

k!
ρj−k

 .
i = 1, 2, . . .

(5)

The paper is organize as follows. In the next Section 2 we define the
Noncentral Pólya-Aeppli process as a pure birth process. Some properties
are given. In Section 3, the Non-central Pólya-Aeppli risk model is analyzed.
A differential equation for the joint distribution of the time to ruin and the
deficit at the time of ruin is derived. As a particular case we obtain the
differential equation for the ruin probability. In Section 4 we consider the
case of exponentially distributed claims.

2 Non-central Pólya-Aeppli process as a pure birth
process

In this section we define the Non-central Pólya-Aeppli process as a pure birth
process. Suppose that {N(t), t ≥ 0} is the number of times a certain event
occurs in time interval (0, t]. The transition probabilities of the counting
process N(t) for every m = 0, 1, . . . are specified by the following postulates:

P (N(t+ h) = n | N(t) = m)

=


[1− (λ1 + λ2)h] + o(h), n = m
[λ1(1− ρ) + λ2]h+ o(h), n = m+ 1
λ1(1− ρ)ρk−1h+ o(h), n = m+ k, k = 1, 2, . . .

where o(h) → 0 as h → 0. We denote the probabilities of N(t) by Pm(t) =
P (N(t) = m), m = 0, 1, 2, . . . . Then the above postulates yield to the
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following Kolmogorov forward equations:

P ′0(t) = −(λ1 + λ2)P0(t), m = 0

P ′m(t) = −(λ1 + λ2)Pm(t) + (λ1(1− ρ) + λ2)Pm−1(t)

+λ1(1− ρ)

m∑
k=2

ρk−1Pm−k(t), m = 2, 3, . . . .

(6)

with
∑1

2 = 0. Suppose that the following initial conditions are fulfilled

P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . . . (7)

From the equations of (6) we get the following differential equation for the
probability generating function of the process N(t)

∂ΨN(t)(s)

∂t
= −[λ1(1− ψ1(s)) + λ2(1− s)]ΨN(t)(s). (8)

The solution of (8) with the initial condition ΨN(0)(s) = 1 is given by (3).
This leads to the second definition.

Definition 2 The stochastic process, defined by the differential equations
(6) with initial conditions (7) is called a Non-central Pólya-Aeppli process.

2.1 Moments

By differentiation in (3) we obtain the mean and the variance of the Non-
central Pólya-Aeppli process

E(N(t)) =

(
λ1

1− ρ
+ λ2

)
t and V ar(N(t)) =

[
λ1

1 + ρ

(1− ρ)2
+ λ2

]
t.

For the Fisher index of dispersion we obtain

FI(N(t)) =
λ2(1− ρ)2 + λ1(1 + ρ)

(1− ρ)[λ2(1− ρ) + λ1]
.

It is easy to check that

FI(N(t)) = 1 +
2λ1ρ

(1− ρ)[λ2(1− ρ) + λ1]
,
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i.e the Non-central Pólya-Aeppli process is over-dispersed related to Poisson
process, and

FI(N(t)) =
1 + ρ

1− ρ
− 2λ2ρ

λ2(1− ρ) + λ1
<

1 + ρ

1− ρ
,

i.e., the Non-central Pólya-Aeppli process is under-dispersed related to Pólya-
Aeppli process.

2.2 Recursions

For the PMF Pm(t) = P (N(t) = m), m = 0, 1, . . . we have the following
recursion formulas

P1(t) = [λ1(1− ρ) + λ2]tP0(t),

Pm(t) =
[
2ρ+ [(λ1(1−ρ)+λ2)t−2ρ]

m

]
Pm−1(t)

−
[
ρ2 + 2ρλ2t−ρ

2

m

]
Pm−2(t) + λ2tρ2

m Pm−3(t) m = 2, 3, . . . ,

with P−1(t) = 0 and P0(t) = e−(λ1+λ2)t.

3 Application to Risk Models

As application of the Non-central Pólya-Aeppli process we consider the stan-
dard risk model {X(t), t ≥ 0}, defined on the complete probability space
(Ω,F , P ) and given by

X(t) = ct−
N(t)∑
i=1

Zi,

(
0∑
1

= 0

)
. (9)

Here c is a positive real constant representing the risk premium rate. The
sequence {Zi}∞i=1 of non-negative independent and identically distributed
random variables is independent of the counting process {N(t), t ≥ 0}
and represents the claim sizes to the insurance company. The claim sizes
{Zi}∞i=1 are distributed as the random variable Z with distribution function
F, F (0) = 0 and mean µ.

We consider the risk model (9), where N(t) is a Non-central Pólya-Aeppli
process and we call this process Non-central Pólya-Aeppli risk model. The
interpretation of the counting process is the following. Suppose that the
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successive claims are of two types, such that the first type of claims are
counted by the Pólya-Aeppli process and the counting process of the second
type of claims is the Poisson process. Our interest is in counting all the
claims in total. Then, the number of the claims has a Non-central Pólya-
Aeppli distribution.

The relative safety loading θ for the risk model in (9), is given by

θ =
EX(t)

E
∑N(t)

i=1 Zi
=

c(1− ρ)

µ[λ1 + λ2(1− ρ)]
− 1.

In the case of positive safety loading θ > 0, the premium income per
unit time c should satisfy the following inequality

c >

(
λ1

1− ρ
+ λ2

)
µ.

Let τ = inf{t : X(t) < −u} with the convention of inf ∅ =∞ be the time
to ruin of an insurance company having initial capital u ≥ 0. We denote by
Ψ(u) = P (τ < ∞) the ruin probability and by Φ(u) = 1 − Ψ(u) the non-
ruin probability. The main in the application is to analyze for this model
the joint probability distribution G(u, y) of the time to ruin τ and the deficit
at the time of ruin D = |u+X(τ)|. The function G(u, y) is given by

G(u, y) = P (τ <∞, D ≤ y), y ≥ 0, (10)

see Klugman et al. (2004), [2]. It is clear that

lim
y−→∞

G(u, y) = Ψ(u) (11)

Using the postulates for a sufficiently small h, we get

G(u, y) = [1− (λ1 + λ2)h]G(u+ ch, y)

+[λ1(1− ρ) + λ2]h

[∫ u+ch

0
G(u+ ch− x, y)dF (x)

+ F (u+ ch+ y)− F (u+ ch)]

+λ1(1− ρ)

∞∑
k=2

ρk−1h

[∫ u+ch

0
G(u+ ch− x, y)dF ?k(x)

+ F ?k(u+ ch+ y)− F ?k(u+ ch)
]

+ o(h),

where F ?k(x), k = 1, 2, . . . is the distribution function of Z1 +Z2 + . . .+Zk.
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Rearranging the terms leads to

G(u+ ch, y)−G(u, y)

ch
=
λ1 + λ2

c
G(u+ ch, y)

−λ1(1− ρ) + λ2
c

[∫ u+ch

0
G(u+ ch− x, y)dF (x)

+F (u+ ch+ y)− F (u+ ch)]

−λ1(1− ρ)

c

∞∑
k=2

ρk−1
[∫ u+ch

0
G(u+ ch− x, y)dF ?k(x)

+ F ?k(u+ ch+ y)− F ?k(u+ ch)
]

+
o(h)

h
.

(12)

Let us denote by

H(x) =
λ1

λ1 + λ2
(1− ρ)

∞∑
k=1

ρk−1F ∗k(x) +
λ2

λ1 + λ2
F (x) (13)

the probability distribution function of the aggregated claims. It follows
from (13), that H(0) = 0 and H(∞) = 1, i.e., H(x) is a proper distribution
function. By letting h → 0 in (12), we obtain the following differential
equation

∂G(u, y)

∂u
=
λ1 + λ2

c

[
G(u, y)−

∫ u

0
G(u− x, y)dH(x)− [H(u+ y)−H(u)]

]
.

(14)
In the following theorem we obtain the initial condition.

Theorem 1 The function G(0, y) is given by

G(0, y) =
λ1 + λ2

c

∫ y

0
[1−H(u)]du. (15)

Proof. Integrating (14) from 0 to ∞ with G(∞, y) = 0 leads to

−G(0, y) =
λ1 + λ2

c

[∫ ∞
0

G(u, y)du

−
∫∞
0

∫ u
0 G(u− x, y)dH(x)du−

∫∞
0 (H(u+ y)−H(u))du

]
The change of the variables in the double integral and simple calculations
yield to

G(0, y) =
λ1 + λ2

c

∫ ∞
0

[H(u+ y)−H(u)]du

and then (15).



Non-central Pólya-Aeppli process and ruin probability 319

3.1 Ruin probability

Theorem 2 For u ≥ 0, the ruin probability Ψ(u) satisfies the equation

∂Ψ(u)

∂u
=
λ1 + λ2

c

[
Ψ(u)−

∫ u

0
Ψ(u− x)dH(x)− [1−H(u)]

]
. (16)

Proof. The result follows from (14) and (11).

Remark 1 The nonruin probability Φ(u) satisfies the equation

∂Φ(u)

∂u
=
λ1 + λ2

c

[
Φ(u)−

∫ u

0
Φ(u− x)dH(x)

]
.

Theorem 3 The ruin probability with no initial capital is given by

Ψ(0) =
µ

c

(
λ1

1− ρ
+ λ2

)
. (17)

Proof. According to (11) and (15) we get

Ψ(0) = lim
y→∞

G(0, y) =
λ1 + λ2

c

∫ ∞
0

[1−H(u)]du.

If X is a random variable with distribution function H(x), then by the
definition of H(x) and EZ = µ we obtain

EX =

(
λ1

(λ1 + λ2)(1− ρ)
+

λ2
λ1 + λ2

)
µ .

Using the fact that EX =
∞∫
0

[1−H(x)]dx we obtain (17).

4 Exponentially distributed claims

Let us consider the case of exponentially distributed claim sizes with mean
µ, i.e. F (x) = 1 − e−

x
µ , x ≥ 0, µ > 0. In this case, for the distribution

function H(x) we obtain

H(x) = 1− λ1
λ1 + λ2

e
−

(1− ρ)x

µ − λ2
λ1 + λ2

e
−
x

µ ,

i.e., it is a mixture of two exponentially distributed variables.
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For the function G(0, y) in (15) we obtain

G(0, y)

= µ
c

(
λ1
1−ρ + λ2

)1− λ1
λ1+λ2(1−ρ)e

−
(1− ρ)y

µ − λ2(1− ρ)

λ1 + λ2(1− ρ)
e
−
y

µ

 .

By differentiation of (16), in the case of exponentially distributed claims,
we obtain the following differential equation for the ruin probability

∂3Ψ(u)

∂u3
+

(
2− ρ
µ
− λ1 + λ2

c

)
∂2Ψ(u)

∂u2

+

(
1− ρ
µ2
− λ1 + λ2(1− ρ)

cµ

)
∂Ψ(u)

∂u
= 0 .

(18)

In the case of positive safety loading, the characteristic equation of (18)
has a root zero and two negative roots. The solution has the form Ψ(u) =
C1+C2e

R1u+C3e
R2u, where R1 and R2 are the nonzero roots of the charac-

teristic equation and Ci, i = 1, 2, 3 are constants. According to the condition
Ψ(∞) = 0, it follows that C1 = 0 and the ruin probability is given by

Ψ(u) = C2e
R1u + C3e

R2u,

where C2 + C3 = µ
c

(
λ1
1−ρ + λ2

)
.

5 Concluding remarks

In this paper we have introduced a new stochastic process, which is a sum
of two well known processes, Pólya-Aeppli and Poisson process. The defined
process is a pure birth process and it can be applied as a counting process
in risk model. For the risk model we obtain an equation for the joint distri-
bution of the time to ruin and the deficit at the time of ruin. In the case
of exponentially distributed claims, the equation for the ruin probability is
solved.
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