Proceedings of Papers

Volume 1

Serbia, Niš, June 25 - 27, 2014
organized by

University of Niš,
Faculty of Electronic Engineering,
Serbia

Technical University-Sofia,
Faculty of Telecommunications,
Bulgaria

University St.Kliment Ohridski- Bitola,
Faculty of Technical Sciences
Macedonia

under auspices of

• Serbian Ministry of Education, Science and Technological Development

in cooperation with

• Academy of Engineering Sciences of Serbia
• Serbia and Montenegro IEEE Section
Chairman:
B. Milovanović University of Niš, Serbia

Vice-chairmen:
R. Arnaudov Technical University of Sofia, Bulgaria
C. Mitrovski University "St.Kliment Ohridski", Bitola, Macedonia

Members:
N. Acevski University "St. Kliment Ohridski", Bitola, Macedonia
I. Atanasov Technical University of Sofia, Bulgaria
M. Atanasovski University "St. Kliment Ohridski", Bitola, Macedonia
M. Bakhaz University of Belgrade, Serbia
A. Bekiarski Technical University of Sofia, Bulgaria
W. Bock University of Ottawa, Canada
O. Boumarov Technical University of Sofia, Bulgaria
V. Češelkoska University "St. Kliment Ohridski", Bitola, Macedonia
D. Denić University of Niš, Serbia
V. Demirev Technical University of Sofia, Bulgaria
R. Dinov Technical University of Sofia, Bulgaria
D. Dimitrov Technical University of Sofia, Bulgaria
K. Dimitrov Technical University of Sofia, Bulgaria
T. Dimovski University "St. Kliment Ohridski", Bitola, Macedonia
D. Dobrev Technical University of Sofia, Bulgaria
I. Dochev Technical University of Sofia, Bulgaria
B. Dokić University of Banja Luka, Bosnia and Herzegovina
N. Dončov University of Niš, Serbia
D. Drača University of Niš, Serbia
T. Eftimov Plovdiv University "Paisii Hilendarski", Bulgaria
N. Gospić University of Belgrade, Serbia
V. Georgieva Technical University of Sofia, Bulgaria
G. Iliev Technical University of Sofia, Bulgaria
I. Iliev Technical University of Sofia, Bulgaria
M. Ivković University of Novi Sad, Serbia
Z. Jakšić IHTM Institute, Belgrade, Serbia
D. Janković University of Niš, Serbia
N. Janković University of Niš, Serbia
M. Jevtić University of Niš, Serbia
B. Jokanović Institut of Physics, Belgrade, Serbia
I. Jolevski University "St. Kliment Ohridski" Bitola, Macedonia
L. Jordanova Technical University of Sofia, Bulgaria
Z. Jovanović University of Niš, Serbia
V. Katić University of Novi Sad, Serbia
B. Kolundžija University of Belgrade, Serbia
Z. Konjović University of Novi Sad, Serbia
M. Kostov University "St. Kliment Ohridski" Bitola, Macedonia
R. Kountchev Technical University of Sofia, Bulgaria
M. Lutovac Singidunum University, Serbia
J. Makal Tech. University of Byalistok, Poland
N. Maleš-Ilić University of Niš, Serbia
TABLE OF CONTENTS

VOLUME 1

ORAL SESSIONS

TELECOMMUNICATIONS SYSTEMS AND TECHNOLOGY

<table>
<thead>
<tr>
<th>TST.1</th>
<th>Capacity Bounds of Lozenge Tiling Constraints</th>
<th>..</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Vasić, A. Krishnan</td>
<td>University of Arizona, USA</td>
<td></td>
</tr>
<tr>
<td>TST.2</td>
<td>New Iterative Method for Optimization of Quasilogarithmic Quantizer for Laplacian Source</td>
<td>..</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Z. Perić, A. Jovanović, M. Tančić</td>
<td>University of Niš, Serbia</td>
<td></td>
</tr>
<tr>
<td>TST.3</td>
<td>Analysis of some Wavelength Assignment Techniques in WDM Optical Networks</td>
<td>..</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>S. Miladić, G. Marković*</td>
<td>University of East Sarajevo, Bosnia and Herzegovina</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Belgrade, Serbia</td>
<td></td>
</tr>
<tr>
<td>TST.4</td>
<td>Performance Analysis of RF/FSO System with Interference at the Relay</td>
<td>..</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>A. Cvjetković, M. Petković, J. Anastasov</td>
<td>University of Niš, Serbia</td>
<td></td>
</tr>
<tr>
<td>TST.5</td>
<td>Performance Analysis of SIM-FSO System over Gamma-Gamma Atmospheric Channel</td>
<td>..</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>M. Petković, N. Zdravković, Č. Stefanović, G. Đorđević</td>
<td>University of Niš, Serbia</td>
<td></td>
</tr>
<tr>
<td>TST.6</td>
<td>Comparative Cost-Capacity Analysis of the Advanced Wireless Heterogeneous Broadband Networks</td>
<td>..</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>V. Nikoljkov, T. Janevski*</td>
<td>Vip operator, Macedonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"University "Ss. Cyril and Methodius", Macedonia</td>
<td></td>
</tr>
<tr>
<td>TST.7</td>
<td>Improving Performance of Multimedia Web Transfer over WAN Connections</td>
<td>..</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>H. Valchanov, M. Angelov</td>
<td>Technical University of Varna, Bulgaria</td>
<td></td>
</tr>
<tr>
<td>TST.8</td>
<td>An Approach of QoS by Admission Control of VoIP over WLANs</td>
<td>..</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>V. Aleksićeva</td>
<td>Technical University of Varna, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

INFORMATICS AND COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>ICS.1</th>
<th>An Exact Interactive Method for Solving Multiple Objective Integer Problems</th>
<th>..</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. Guliashki, L. Krilov</td>
<td>Institute of Information and Communication Technologies, Bulgaria</td>
<td></td>
</tr>
<tr>
<td>ICS.2</td>
<td>Resource Allocation for Maximum Performance and Minimum Cost for 3-tier SaaS Application in Azure</td>
<td>..</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>S. Ristov, M. Gusev, B. Koleska, G. Velkoski*</td>
<td>University "Ss. Cyril and Methodius", Macedonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Innovation LLC, Macedonia"</td>
<td>"Innovation LLC, Macedonia"</td>
<td></td>
</tr>
<tr>
<td>ICS.3</td>
<td>Avatar Concepts in Self Healthcare Systems</td>
<td>..</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>M. Gusev, S. Ristov, A. Guseva*</td>
<td>University "Ss. Cyril and Methodius", Macedonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Innovation LLC, Macedonia"</td>
<td>"Innovation LLC, Macedonia"</td>
<td></td>
</tr>
</tbody>
</table>
ICS.4 Lexico-Semantic Collaborative Learning Framework
M. Jovanović, D. Todorovjević
University of Niš, Serbia

ICS.5 Definition of Transposition Base Opening System With the Algorithm of Machine Learning
V. Vučković
University of Niš, Serbia

ICS.6 Models of Inductive Reasoning
M. Ilić, V. Stanković*
College of Agriculture and Food Technology, Prokuplje, Serbia
University of Niš, Serbia

ICS.7 Prediction of the Stock Market Trend Using LS-SVM Based on Technical Indicators
I. Marković, J. Stanković, M. Stojanović*, M. Božić
University of Niš, Serbia
College of Applied Technical Sciences, Serbia

COMPUTER SYSTEMS AND INTERNET TECHNOLOGIES I

CIT I.1 Evaluation of Application Level Mechanism for Reliable Smart Objects Communications
I. Atanasov, M. Ivanov, E. Pencheva
Technical University of Sofia, Bulgaria

CIT I.2 An Approach to Design Web Services for Remote Entity Management
I. Atanasov, N. Krastanov, E. Pencheva
Technical University of Sofia, Bulgaria

CIT I.3 Web Services Deployment in Microsoft Azure Cloud Computing Platform
E. Srbinovska, P. Mitrevski
University "St. Kliment Ohridski", Macedonia

CIT I.4 Multipurpose Cloud-based Distance Learning Laboratory: A Case Study
A. Donevski, S. Ristov, M. Gusev
University "Ss. Cyril and Methodius", Macedonia

CIT I.5 Parallelization of Machine Learning Methods Using CUDA
G. Velkoski, M. Simjanoska*, S. Ristov*, M. Gusev*
Innovation LLC, Macedonia
University "Ss. Cyril and Methodius", Macedonia

CIT I.6 Data Mining Methodology for Web Users’ Demographic Data Prediction
V. Gega, I. Jolevski*
University for Information Science and Technology, Macedonia
University "Ss. Cyril and Methodius", Macedonia

CIT I.7 Improved Deflection Routing Method for Bufferless Networks-on-Chip
I. Stojanović, M. Jovanović, S. Došić, G. Doršević
University of Niš, Serbia

COMPUTER SYSTEMS AND INTERNET TECHNOLOGIES II

CIT II.1 Realization of Universal HW/SW Module for Integration of Medical Laboratory Devices into Medical Information System
A. Milenković, D. Janković, M. Stojković, A. Veljanovski, P. Rajković
University of Niš, Serbia

CIT II.2 Processing of Big Spatio-Temporal Data Using MapReduce
D. Stojanović, N. Stojanović
University of Niš, Serbia

CIT II.3 Incremental Development of e-Learning Systems for Mobile Platforms
M. Frtunić, L. Stojmenov, D. Rančić
University of Niš, Serbia
CIT II.4 An Approach for Producing Long Term Statistics based on Weather Radar Data 109
V. Mihejlovic, M. Kovačević, D. Rančić
University of Niš, Serbia

CIT II.5 Comparison of Different Wireless Sensor Network Node Technologies .. 113
M. Srbinovska, C. Gavrovski, V. Dimcev, Z. Kokolanski
University "Ss. Cyril and Methodius", Macedonia

CIT II.6 Immediate Assessment based Semantic e-Learning Evaluation Approach 117
D. Todosijević, M. Jovanović
University of Niš, Serbia

CIT II.7 One Solution for Building Reconfigurable Multi-Projection Systems using the Adobe AIR Platform .. 121
M. Radmanović, D. Tatić, D. Gajić
University of Niš, Serbia

RADIO COMMUNICATIONS, MICROWAVE TECHNIQUE AND ANTENNAS

RMA.1 ANN based Inverse Electro-Mechanical Modeling of RF MEMS Capacitive Switches 127
University of Niš, Serbia
*TU München, Germany

RMA.2 Broadband Microstrip Doherty Amplifier Design and Linearization ... 131
A. Đorić, A. Atanaskaević*, N. Maleš-Ilić*, B. Milovanović*, K. Blau**
Innovation Centre of Advanced Technology, Serbia
*University of Niš, Serbia
**Ilmenau University of Technology, Germany

RMA.3 A New Procedure for Extraction of Noise Wave Parameters of Microwave FETs 135
V. Đorđević, Z. Martinović*, V. Marković*, O. Pronic-Rancić*
Innovation Centre of Advanced Technology, Serbia
*University of Niš, Serbia

RMA.4 TLM Method with Z-transforms - Efficient Tool for Dispersive Anisotropic Structures Modelling ... 139
M. Kostić, N. Dončov, Z. Stanković
University of Niš, Serbia

RMA.5 Band Gap Evaluation for Single, Dual and Triple Band Electromagnetic Band Gap Structures with Applied Geometrical Modifications ... 143
I. Iliev, M. Nedelchev, E. Markov
University of Sofia, Bulgaria

RMA.6 Calculation of an Input Impedance of a Coax-fed Microstrip Circular Antenna using the TLM 147
J. Joković, T. Dimitrijević, N. Dončov, B. Milovanović
University of Niš, Serbia

RMA.7 Dielectric Substrate Thickness Impact on Frequency Properties of Monopole Sierpinski Gasket Antenna .. 151
P. Petkov, B. Bonev, T. Dimova
Technical University of Sofia, Bulgaria

RMA.8 Design Considerations for Splash Plate Reflector Antenna ... 153
P. Petkov
Technical University of Sofia, Bulgaria
SIGNAL PROCESSING

SP.1 Power Disturbances Simulation and Analysis in Wavelet Domain ... 157
M. Kostov, B. Gegov, M. Atanasovski*, M. Petkovski*, C. Mitrovski
*Faculty of Technical Sciences, Bitola, Macedonia
University "St. Kliment Ohridski", Macedonia

SP.2 Comparison of Novel Designed Class of CIC FIR Filter Functions with Classical CIC Filters 161
B. Stošić, V. Pavlović, D. Milić
University of Niš, Serbia

SP.3 ECG Signal Acquisition and Filtering .. 165
M. Veljković, I. Janjić, D. Milić, D. Milović
University of Niš, Serbia

SP.4 Image Deblurring Methods and Image Quality Evaluation ... 169
V. Gölashki, D. Dimov
Institute of Information and Communication Technologies, Bulgaria

SP.5 Combining Features by Query-time Weights Determination for Image Retrieval ... 177
N. Neshov
Technical University of Sofia, Bulgaria

SP.6 Method for Colorization of the Original Photographs of Nikola Tesla .. 181
V. Vučković, S. Spasić
University of Niš, Serbia

SP.7 The Effect of the Contrast Enhancement Processes on the Structural Entropy of Colonoscopic Images .. 185
G. Csizmadia, S. Nagy
Szechenyi Istvan University, Hungary

WIRELESS COMMUNICATIONS

WC.1 Receiver Induced Intermodulation Interference in GSM-900 .. 191
P. Petkov, K. Angelov, I. Iliev, B. Bonev, V. Poulov
Technical University of Sofia, Bulgaria

WC.2 Parametrical Analysis of DVB-T channels .. 195
L. Jordanova, G. Karpov, D. Dobrev
Technical University of Sofia, Bulgaria

WC.3 Algorithms for APSK Constellation Optimization .. 199
L. Jordanova, L. Laskov, D. Dobrev
Technical University of Sofia, Bulgaria

WC.4 Outage Performance of Dual-Hop AF Relaying System in Weibull-gamma Fading Environment 203
J. Anastasov, A. Cvetković, D. Milović, D. Milić
University of Niš, Serbia

WC.5 Dynamic Characteristics of Selection Combining Receiver with Different Decision Algorithms 207
D. Drača, A. Panajotović, N. Sekulović*
University of Niš, Serbia
*College of Applied Technical Sciences, Serbia

WC.6 Comparative Performance Studies of Laboratory WEP IEEE 802.11g PTP Links 211
J. Carvalho, C. Pacheco, H. Veiga, A. Reis
University of Beira Interior, Portugal

WC.7 Analysis of the SC Macrodiversity Reception in the Presence of Gamma Shadowed Nakagami-m Fading .. 215
N. Simić, M. Milovanović, D. Milović
University of Niš, Serbia
<table>
<thead>
<tr>
<th>ELE handles ELECTRONIC COMPONENTS, SYSTEMS AND TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL.1 Start-Stop Ring Oscillators for GALS Designs221</td>
</tr>
<tr>
<td>G. Jovanović, M. Stojčev</td>
</tr>
<tr>
<td>University of Niš, Serbia</td>
</tr>
<tr>
<td>EL.2 FPGA Implementation of Digital PLL-based Frequency Synthesizer with Programmable Frequency Dividers225</td>
</tr>
<tr>
<td>M. Kovacheva, E. Stoumenov, I. Pandiev</td>
</tr>
<tr>
<td>Technical University of Sofia, Bulgaria</td>
</tr>
<tr>
<td>EL.3 Design and Realization of a Flexible Mains Switching Power Supply229</td>
</tr>
<tr>
<td>Z. Živanović, V. Smiljaković</td>
</tr>
<tr>
<td>IMTEL Komunikacije AD, Serbia</td>
</tr>
<tr>
<td>EL.4 Design and Realization of a Low Noise Power Converter233</td>
</tr>
<tr>
<td>Z. Živanović, V. Smiljaković</td>
</tr>
<tr>
<td>IMTEL Komunikacije AD, Serbia</td>
</tr>
<tr>
<td>EL.5 Verilog - A Noise Macromodel of Current Feedback Operational Amplifier with Improved Speed and Accuracy237</td>
</tr>
<tr>
<td>G. Valkov</td>
</tr>
<tr>
<td>Technical University of Sofia, Bulgaria</td>
</tr>
<tr>
<td>EL.6 Subtraction Procedure for ECG Drift Removing: High Level Synthesis with Compaan241</td>
</tr>
<tr>
<td>T. Shoshkov</td>
</tr>
<tr>
<td>Technical University of Sofia, Bulgaria</td>
</tr>
<tr>
<td>VOLUME 2</td>
</tr>
<tr>
<td>POSTER SESSIONS</td>
</tr>
<tr>
<td>COMPUTER SCIENCE AND INTERNET</td>
</tr>
<tr>
<td>CSI.1 Using IT Management Processes for Achieving Better Efficiency in the IT Service247</td>
</tr>
<tr>
<td>Y. Milev, L. Kirilov</td>
</tr>
<tr>
<td>Institute of Information and Communication Technologies, Bulgaria</td>
</tr>
<tr>
<td>CSI.2 Technology Transfer Office “ICT for Energy Efficiency”: A Factor for Open Innovations251</td>
</tr>
<tr>
<td>R. Andreev, J. Doshev, I. Stoyanov</td>
</tr>
<tr>
<td>Institute of Information and Communication Technologies, Bulgaria</td>
</tr>
<tr>
<td>CSI.3 Usability Model for Evaluating the usability of Web-based GIS Applications255</td>
</tr>
<tr>
<td>N. Đorđević, Đ. Rančić, R. Simić,</td>
</tr>
<tr>
<td>University of Niš, Serbia</td>
</tr>
<tr>
<td>CSI.4 Development of Software Program for Direct Insertion into MySQL Database from Communication Interface259</td>
</tr>
<tr>
<td>G. Goranov, R. Hristova*</td>
</tr>
<tr>
<td>Technical University of Gabrovo, Bulgaria</td>
</tr>
<tr>
<td>University of Sofia “St. Kliment Ohridski”, Bulgaria</td>
</tr>
<tr>
<td>CSI.5 Telemetry System for WRC Sport Cars. Mobile Part.263</td>
</tr>
<tr>
<td>H. Nenov, G. Hristova, P. Georgiev</td>
</tr>
<tr>
<td>Technical University of Varna, Bulgaria</td>
</tr>
</tbody>
</table>
CONTROL SYSTEMS

CS.1 Comparison Analysis of the Heading Accuracy of GPS, e-Compass and Gyroscope
R. Miletiev, R. Kenov, I. Simeonov, E. Iontchev*
*Technical University of Sofia, Bulgaria
Higher School of Transport “T. Kableshkov”, Bulgaria

CS.2 Dynamic Compensation of the Gyro bias by e-Compass
R. Miletiev, R. Kenov, I. Simeonov, E. Iontchev*
*Technical University of Sofia, Bulgaria
Higher School of Transport “T. Kableshkov”, Bulgaria

CS.3 Study on Control System of Permanent Magnet Linear Synchronous Motor
B. Markov, V. Panov*
*University of Food Technologies, Bulgaria
*Technical University of Sofia, Bulgaria

CS.4 Modular Development of Linear Induction Motor Control in Simulink Environment
B. Markov
*University of Food Technologies, Bulgaria

Z. Hubenova, V. Gergov*
*Space Research and Technology Inst., Bulgaria
Univ. of Transport "Todor Kableshkov", Bulgaria

CS.6 Generalized Forces of the Robotic System with Fractional Order Thermoviscoelastic Element
M. Cajić, M. Lazarević*
*Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
University of Belgrade, Serbia

CS.7 Models of Objects of Control in the System for Monitoring and Dispatching on Metropolitan-Sofia
E. Dimitrova
*Univ. of Transport "Todor Kableshkov", Bulgaria

CS.8 Design a Simple Hardware in the Loop Test-bed Platform for Educational Purposes
M. Petkovski, A. Jurukovski*
*Faculty of Technical Sciences Bitola, Macedonia
Mining and Energy Combine, Macedonia

ENGINEERING EDUCATION

EE.1 A Case Study Approach in Microcontroller Education
V. Rankovska
*Technical University of Gabrovo, Bulgaria

EE.2 E-learning Module for Computer-aided Design in Moodle Platform
G. Marinova, N. Stoyanov
*Technical University of Sofia, Bulgaria

EE.3 Various Approaches to Teach and Learn the Computer Architecture and Organization Course
G. Armenski, S. Ristov, M. Gusev, M. Kostoska
*University "Ss. Cyril and Methodius", Macedonia

EE.4 A Simple Hydraulic System as a Laboratory Equipment for Demonstrating On-Off Control
M. Ristović, S. Labura, M. Naumović*
*University of East Sarajevo, Bosnia and Herzegovina
University of Niš, Serbia
EE.5 Laboratory Equipment for Hydrogen Energy Education ...315
S. Letskovska, K. Seymenliyski, P. Rahnev*
Burgas free University, Bulgaria
*As. Zlatarov University, Bulgaria

RADIO COMMUNICATIONS, TELECOMMUNICATIONS TECHNOLOGY AND ELECTROMAGNETICS

RTE.1 Complexity of the McEliece Cryptosystem based on GDBF Decoder for QC-LDPC Codes321
O. Al Rasheed, D. Drajić, P. Ivaniš, G. Đorđević*
College of Applied Technical Sciences, Serbia
*University of Niš, Serbia

RTE.2 Probability of Collision in a Cooperative Relay Diversity Scheme in Nakagami Fading Channel ..325
N. Milošević, B. Dimitrijević, Z. Nikolić
University of Niš, Serbia

RTE.3 Level Crossing Rate of Nakagami-m Signal Envelope Subjected to Gamma Shadowing329
D. Đošić, Č. Stefanović, D. Milić, D. Radenković, P. Spalević
University of Niš, Serbia

RTE.4 Performance Analysis of MAMD Algorithms with QoS Parameters in Heterogeneous Network333
R. Dobrev
Technical University of Sofia, Bulgaria

RTE.5 Simulation Estimation of Network and Quality Characteristics in Video Transmission over LTE Network ..337
G. Mihaylov, T. Iliev
University of Ruse “Angel Kanchev”, Bulgaria

RTE.6 Indoor Propagation Path ILoss Modeling for Wireless Sensor Networks341
S. Savov, Z. Ganev
Technical University of Varna, Bulgaria

RTE.7 ANN Model for DOA Estimation of Correlated Signals using Circular Antenna Array343
M. Stoilković, Z. Stanković*, B. Milovanović*, N. Dončov*
Innovation Centre of Advanced Technology, Serbia
*University of Niš, Serbia

RTE.8 Localization of Mobile Users Stochastic Radiation Nature by using Neural Networks347
Z. Stanković, N. Dončov, I. Milovanović*, J. Russer**, B. Milovanović, M Stoilković***
University of Niš, Serbia
*Singidunum University, Serbia
**Technical University of München, Germany
***Innovation Centre of Advanced Technology, Serbia

RTE.9 Design of a Printed Antenna Array in Rectangular Corner Reflector with Cosecant Square-Shaped Beam Pattern ...351
M. Milijić, A. Nešić*, B. Milovanović
University of Niš, Serbia
*IMTEL Komunikacije AD, Serbia

RTE.10 Electromagnetic Modeling in Combination with Wave Digital Approach for Efficient Analysis of Microstrip Bandpass Filters with a Dual-Passband Response355
B. Stošić, N. Dončov
University of Niš, Serbia

RTE.11 Three-Wire Star-Shaped Grounding Electrode in the Vicinity of the Semi-Cylindrically Shaped Ground Inhomogeneity ..360
N. Cvetković, D. Vučković, M. Stojanović, A. Ristić
University of Niš, Serbia
DIGITAL SIGNAL PROCESSING

DSP.1 Research and Analysis of Methods for Localization of Audio Sources ... 367
V. Hristov, S. Pleshkova-Bekjarska
Technical University of Sofia, Bulgaria

DSP.2 MIPFD Algorithm for Image Fire Detection ... 373
B. Prlićević, Z. Milivojević*, D. Brodić**
Polytechnic School for Vocational Studies, Serbia
*College of Applied Technical Sciences, Serbia
**University of Belgrade, Serbia

DSP.3 Image Edge Detection as Part of the Feature Extraction for Neural Network Realized with LabVIEW Application ... 377
L. Docheva
Technical University of Sofia, Bulgaria

DSP.4 Digital Image Filtering with LabVIEW .. 381
L. Docheva
Technical University of Sofia, Bulgaria

DSP.5 Robustness of SVD Watermarks in Video Sequences Encoded with H.264/AVC 385
Z. Milivojević, Z. Veličković
College of Applied Technical Sciences, Serbia

ENERGY SYSTEMS AND EFFICIENCY

ESE.1 The Influence of the Power Systems from the Neighboring Countries, on the Fault Currents in the Macedonian Power System ... 391
Lj. Trpezanovski, M. Atanasovski, M. Milosevski
Faculty of Technical Sciences Bitola, Macedonia

ESE.2 Station for Emulation of Load and Electrical Motors Testing ... 395
M. Rošić, M. Božić, M. Bječkić
University of Kragujevac, Serbia

ESE.3 Modelling Self-excitation Overvoltage in an Induction Motor With Individual Compensation of Reactive Power .. 399
M. Radić, Z. Stajić
University of Niš, Serbia

ESE.4 Multicriteria Analysis of the Smart Grid Project Efficiency ... 403
A. Janjić, L. Velimirović*, S. Savić, M. Stanković
University of Niš, Serbia
*Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia

MEASUREMENT SCIENCE AND TECHNOLOGY

MST.1 Acquisition System for Generation of the Test Signals with Standard Harmonic Disturbances 409
M. Simić, D. Živanović, D. Đenić, G. Mijalković
University of Niš, Serbia

MST.2 Using Multifunction DAQ and LabVIEW for the Development of a Single-Channel EEG for Multiple Sclerosis Detection ... 413
V. Mihaiov, K. Dimitrov, Y. Velchev, T. Mitsev
Technical University of Sofia, Bulgaria

MST.3 Model Development for Digital Stochastic Measurement of Noised EOG Signals 417
J. Đorđević-Kozarav, P. Sovilj*, D. Mitić, V. Vujićić*, D. Radenković
University of Niš, Serbia
*University of Novi Sad, Serbia
ELECTRONIC MATERIALS, COMPONENTS, SYSTEMS AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>ELT.1</th>
<th>Synthesis of Zeolite NaA with Facets by the Sol-gel Technology</th>
<th>443</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Georgiev, I. Petrov, T. Michalev, I. Pejchev</td>
<td>As. Zlatarov University, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.2</th>
<th>The Removal of Cu(II) Ions from Aqueous Solutions on Synthetis Zeolite NaA</th>
<th>446</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Michalev, I. Petrov, I. Pejchev</td>
<td>As. Zlatarov University, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.3</th>
<th>Electrical Properties of Piezo Polymer Nanocomposites and its Application</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Borisova, D. Kiryakova, A. Atanassov</td>
<td>As. Zlatarov University, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Nedev, Z. Nenova, T. Nenov</td>
<td>Technical University of Gabrovo, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.5</th>
<th>High Frequency Inductive Power Transfer Device for Ultrasonic Applications</th>
<th>458</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Madzharov</td>
<td>Technical University of Gabrovo, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.6</th>
<th>Efficiency Investigations of DC-DC Converter Supplying Power Amplifiers</th>
<th>463</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Brusev, B. Nikolova, G. Kunov, S. Vuchev</td>
<td>Technical University of Sofia, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.7</th>
<th>Two-parametrical Control of Series Resonant DC-DC Converters that Operate with Common Load</th>
<th>467</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Vuchev, N. Bankov</td>
<td>University of Food Technologies, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.8</th>
<th>Control Characteristics of High-Voltage Resonant DC/DC Converter</th>
<th>471</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Bankov, Y. Madankov, A. Vuchev</td>
<td>University of Food Technologies, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELT.9</th>
<th>Three-Phase Soft-Switched Quasi Resonant DC Link Inverter for Motor Drive Application</th>
<th>475</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Spirov, N. Komitov</td>
<td>University of Food Technologies, Bulgaria</td>
<td></td>
</tr>
</tbody>
</table>
ELT.10 Matlab-Simulink Model of Three Phase BUCK Rectifier with Sinusoidal PWM ...479
G. Kunov, S. Vuchev
Technical University of Sofia, Bulgaria

ELT.11 Microprocessor-based Apparatus for Electrical Stimulation of Ruminant Meat483
I. Maslinkov, K. Kolev
University of Food Technologies, Bulgaria

ELT.12 A Microprocessor System for Food Quality Evaluation by Hyperspectral Images Processing487
K. Kolev
University of Food Technologies, Bulgaria

ELT.13 Preparation of Germanium Photo Detectors and Photovoltaic ...491
S. Letskovska, K. Seymenliyiski
Burgas free University, Bulgaria
Efficiency Investigations of DC-DC Converter Supplying Power Amplifiers
Tihomir Brusev1, Boyanka Nikolova2, Georgi Kunov3 and Stoyan Vuchev4

Abstract – In the modern battery powered mobile communication devices output transmitted power is changed in wide range. Most of the energy in such electronic systems is consumed from power amplifier (PA). By increasing of power amplifier’s efficiency significantly could be increased the overall efficiency of the portable devices. The widespread used method is modulation of collector voltage (V_{cc}) of PA. Using switching-mode dc-dc converter the operated voltage of power amplifier could be dynamically changed. In this paper are presented investigation results of dc-dc converter, which can be used for dynamically regulation of collector voltage of PA.

Keywords – dc-dc converter, efficiency, Cadence, CMOS technology.

I. INTRODUCTION

The modern mobile communication electronic devices transfer data in the wide frequency range. One of the most critical parameter is their efficiency because of the limited battery resources [1]. Therefore power consumption of the system’s building blocks has to be minimized. Most of the energy is consumed from power amplifier. Improving of transmitted power efficiency of this single component can help to increase the battery run time.

Power amplifiers (PAs) used in the portable communication devices have to be linear because the distortions have to be minimized. In order to fulfill this requirement class-A PAs are usually used. They are linear, but the maximum possible theoretical efficiency of those circuits is only 50\%. Their best efficiency can be achieved when the output signal of power amplifier swings from rail to rail [2]. Therefore results closed to 50\% could be reached if collector voltage (V_{cc}) is changed dynamically as a function of output signal’s amplitude.

The regulations of power amplifier’s collector voltage V_{cc} can be performed by high frequency voltage regulators. The optimal choice is switching-mode dc-dc converters because they are high efficient circuits. Collector voltage (V_{cc}) of power amplifier is smaller than battery voltage during most of the operation time of portable electronic devices. The focus of that paper is switching-mode buck dc-dc converter, suitable for dynamic output voltage regulation.

In Section II are presented the challenges and problems connected with efficiency improvement of power amplifiers used in the new mobile communication devices. Theory information about dc-dc converters is given also in the same section. Received investigation results of buck dc-dc converter, which can dynamically adjust V_{cc} voltage of PA, are presented in Section III. The whole switching-mode regulator system is designed for integrated circuits (IC) applications in CMOS technology.

II. POWER AMPLIFIER AND DC-DC CONVERTER IN MOBILE ELECTRONIC DEVICES

The new cellular technology is 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE). High data rate and high quality is ensured for mobile communications devices [3]. Therefore the increased customer requirements for more function of the portable electronic devices at low cost can be satisfied. For example nowadays online gaming, mobile television, multimedia streaming is available in the cellular phones.

LTE supports several channel bandwidths, which are: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, and 20MHz. Long Term Evolution maintain earlier 3GPP technology such as code division multiple access CDMA, wide-band code division multiple access/high-speed packet access WCDMA/HSPA, time division synchronous code division multiple access TD-SCDMA.

The most important parameters for modern generation mobile electronic devices are liner output power and high efficiency. Low energy consuming building blocks is challenge to the overall system design in order to be achieved longer battery run time [4].

A. Power Amplifier

Power amplifiers can work as a linear circuit with poor efficiency or as a circuit with better efficiency, but with distortion. Obviously trade-off between linearity and efficiency is needed when appropriate class of PA is selected from the designers [5]. Usually for RF power amplifiers in the new generation portable electronic devices is used class-A PA.

The easiest way is PA to be powered directly from battery. This is not efficient method because the mobile electronic devices work at different output powers level. The voltage
regulators, which change their outputs according to the required signal being transmitted, are used. The efficiency of power amplifier is increased if collector voltage is adjusted.

The power added efficiency (PAE) is a parameter which describes the RF power amplifier efficiency:

\[
PAE = \frac{P_{\text{out}} - P_{\text{in}}}{P_{\text{dc}}},
\]

where \(P_{\text{out}} \) is a output power of PA, \(P_{\text{in}} \) is a input power of PA and \(P_{\text{dc}} \) is a dc power which is delivered to PA. These parameters express how dc power is transformed to the RF power.

Different techniques are used for improving the efficiency and linearity of power amplifier [2]. The average power tracking and envelope tracking are different method used to adjust collector voltage \(V_{ce} \) as function of the transmitted output power. In the Fig. 1 are shown the principle of operation of those two techniques.

![Average power tracking and envelope tracking techniques](image)

Fig. 1. Average power tracking and envelope tracking techniques.

Envelope tracking method is faster than average power tracking. The shaded area in average power tracking techniques is proportional to the power dissipation. As can be seen from the picture in Fig. 1 consumed energy in average power tracking is bigger compare to envelope tracking. Dissipated power is smaller if \(V_{ce} \) is closed to the output voltage amplitude. Envelope tracking mechanism is more efficient than average power tracking.

![Envelope detector](image)

Fig. 2. Envelope detector.

For amplitude detection of the transmitted signal are used envelope detectors. The control system of dc-dc converter receives information from those circuit’s blocks and adjust the output voltage of the regulator to the desired level [6]. One of the circuits, which can be used for the envelop detectors (ED), is shown in Fig. 2.

The circuit is simple and includes a diode and a \(RC \) (resistor-capacitor) filter. The designers have to choose values of \(R \) and \(C \) to satisfy the condition:

\[
f_{\text{signal}} < \frac{1}{2\pi RC} \rightarrow f_{\text{corner}},
\]

where \(f_{\text{corner}} \) is a carrier frequency and \(f_{\text{signal}} \) is a base band signal frequency.

Linear voltage regulators have low efficiency when output voltage is not close to the input voltage. Because of the different powers of the transmitted signal, collector voltage \(V_{ce} \) of PA has to vary in order to be increase the efficiency. Therefore switching-mode dc-dc converter is better choice for voltage regulator’s circuit.

B. DC-DC Converter

The efficiency of PA, which is the most energy consumed circuits in the modern portable electronic devices, can be increased by decreasing of power dissipation. Voltage regulator, which can control \(V_{cc} \) is used.

High efficient voltage regulator is needed to improve the overall efficiency of the mobile devices. Linear regulators have simple structure and occupied small silicon area, but they have great energy dissipation, which is transformed in heat.

During most of the time collector voltage of power amplifier is less than battery voltage. Therefore switching-mode buck dc-dc converter is considered as a circuit, which can ensure dynamic regulation of collector voltage of power amplifier. Theoretically they have very high efficiency. The switching frequency \(f_s \) of the dc-dc converter should be much higher than base band signal frequency. In Fig. 3 is shown schematic of synchronous buck dc-dc converter.

![Synchronous buck dc-dc converter](image)

Fig. 3. Synchronous buck dc-dc converter.

Higher switching frequency \(f_s \) leads to increasing of switching power losses and decreasing of efficiency of the buck converter. The dc-dc converter efficiency is equal to:

\[
\eta = \frac{P_{\text{out}}}{P_{\text{in}}},
\]
where P_{out} is a average output power of the regulator (output voltage of synchronous buck dc-de converter in Fig. 3 is applied to collector of PA); P_m is a average input power of the regulator (input voltage of synchronous buck dc-de converter in Fig. 3 is battery voltage of the mobile electronic devices).

The conducting losses in the MOS transistors are proportional to the switching frequency f_s and the rms-value of the current flowing through the device [7]. This relationship is given bellow:

$$P_{mos} = k_1 I_{rms}^2 + k_2 f_s,$$

where k_1 and k_2 is are technology dependent coefficient, which are taking into account the size of the power MOS transistors, as well as the resistive and the capacitive losses associated with the MOS structure. Small inductor ripple current will result in smaller rms-value of the current through the MOS structure, and it will respectively lead to better efficiency.

III. INVESTIGATIONS RESULTS OF DESIGNED BUCK DC-DC CONVERTER

Buck dc-de converter is designed with Cadence on CMOS process for low voltage integrated circuits applications. The switching frequency f_s of the circuit should be much higher than 20 MHz, which is larger base band supported from LTE. A Pulse-Width Modulation (PWM) control technique is used to regulate the two transistors in power stage of synchronous buck dc-de converter. The schematic of designed switching-mode regulator is shown in Fig. 4.

![Fig. 4. Schematic of buck converter system designed on CMOS process.](image)

The switching frequency f_s determined from ramp generator is equal to 76.2 MHz. Output voltage of the regulator has to be dynamically adjusted as function of transmitted signal from power amplifier.

The ability of designed buck converter to react at fast changes of reference voltage V_{ref} is examined. In Fig. 5 are presented received simulations results when voltage reference jumps from 0.5 V to 1.3 V. As can be seen from the picture output voltage of the buck converter is stabilized at the new desire level for approximately 1.5 μs.

![Fig. 5. Reaction of buck converter when voltage reference V_{ref} jumps from 0.5 V to 1.3 V.](image)

In Fig. 6 are shown waveforms of ramp generator’s signal and output voltage V_{out} of dc-de converter, when V_{ref} is stabilized. The reaction of the regulator when V_{ref} is changed from 1.3 V to 2.8 V is investigated. The received simulations results are presented in Fig. 7.

![Fig. 6. Waveforms of V_{ramp} and V_{out} and when V_{ref} jumps from 0.5 V to 1.3 V.](image)

As can be seen from the picture presented in Fig. 7 output voltage V_{out} is stabilized for approximately 1.5 μs.

High switching frequency f_s is key parameter for dc-de converters, which have to change dynamically their output voltages according to the transmitted power level of mobile devices. On the other hand switching power losses of the voltage regulators are proportional to f_s. High switching frequency of buck converter can helps also for fully integration of whole regulator system together with other circuit’s block of the mobile electronic devices.
In Fig. 8 is presented graphically efficiency of the investigated circuit as a function of output voltage. When \(V_{out} \) of buck converter is controlled to be 0.5 V efficiency is 52.4 %, as well as for \(V_{out} \) equal to 2.8 V efficiency is equal to 85 %.

IV. CONCLUSION

In this paper are presented investigations results of buck dc-de converter, which can be used for dynamic regulation of power amplifier’s collector voltage in mobile portable electronic devices. The problems connected with efficiency improvement of power amplifier are discussed. The reaction of regulator’s output voltage as function of reference voltage of PWM control system is examined. The switching frequency \(f_s \) of the buck converter designed with Cadence on CMOS technology is equal to 76.2 MHz. The output voltage \(V_{out} \) of investigated circuit is stabilized for approximately 1.5 \(\mu \)s, when reference voltage jumps from 0.5 V to 1.3 V and from 1.3 V to 2.8 V. The efficiency of the buck converter varies from 52.4 % to 85 %, when \(V_{out} \) is respectively 0.5 V and 2.8 V.

ACKNOWLEDGEMENT

The research described in this paper was carried out within the framework of Project DUNK – 01/03 – 12.2009.

REFERENCES

466