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ABSTRACT

In this paper, we continue to investigate the energy conservation equation obtained in our
previous paper. We set ourselves three new goals: (i) to rewrite the main equations in terms
of density profile in order to give more physical insight; (ii) to investigate the significance
of two new terms in the energy conservation equation that originate from the gravity of the
outer shells of cloud and the masses outer to the cloud, respectively; (iii) to investigate the
main equation when the kinetic turbulent term scales according to Larson’s law and it is
independent, formally, of the accretion, in contrast to the previous work. The combination
of supersonic turbulence and spherical symmetry raises a caveat that we comment on in our
conclusions. We have obtained two solutions for the density profile, which scale with slopes
of —2 and -3/2, respectively. The energy balance for the second solution is the same as in our
previous paper: this is a free-fall. For the first solution, there are two cases: (1) if the turbulent
term does not scale, then it could be important for the energy balance of the cloud; (2) if the
turbulent term does scale, then it is not important for the energy balance of the cloud. The two
new gravitational terms do not affect the existence of the two solutions, but the gravitation of

the outer masses calibrates the energy balance for the first solution.
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structure.

1 INTRODUCTION

It is very important to understand the origin of the probability
distribution function (PDF) of the mass density of the interstellar
medium (ISM) in order to obtain an explanation for the star
formation process from first principles (Hennebelle & Falgarone
2012; Krumholz 2014; Klessen & Glover 2016). The PDF of a
medium is determined by the physics of the interstellar gas, but there
is a link between the PDF and the local star formation process. This
is why the PDF of a given star-forming region is a tool for predicting
of the initial stellar mass function, the star formation rate and the
star formation efficiency in this region (Krumholz 2014; Offner
et al. 2014). If we know how the physics of a medium determines
the PDF, then we can make a robust link between that physics and
the local star formation (Elmegreen 2018).

Our goal is to obtain the PDF from first principles. However, there
are different physical regimes in the ISM. Recently, we investigated
this task (Donkov & Stefanov 2018, hereafter Paper I) in the case
of cold molecular gas with an isothermal equation of state (Ferriere
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2001). We studied a gas ball with radial symmetry that accretes
material from the outside. The gas entering the cloud (our gas ball)
through its boundary (with supersonic velocity) goes through all the
scales and finishes in the centre of the ball where a very small and
dense core is located (inside which star formation can eventually
occur); see Burkert (2017), who discusses this so-called simple
bathtub model. We have also assumed that there is supersonic
compressible turbulence and that it is locally homogeneous and
isotropic in every shell of the gas ball. The whole system is in
a steady state, which concerns both the macro-states (the motion
of the fluid elements) and the micro-states (the thermal motion of
the molecules). We neglected the magnetic fields and the back-
reaction from newborn stars. We also neglected the dissipation,
assuming that our scales (these are the radii of the gas ball) belong
to the inertial range of the turbulent cascade. So the physics of our
system consists of gravity, supersonic turbulence and accretion, and
thermodynamics (isothermal state). Solving the set of compressible
Euler equations in spherical coordinates, after they were ensemble
averaged, we obtained two equations. The first equation, coming
from the equation of motion of a fluid element, shows that the
sum of the kinetic (accretion plus turbulent), the thermal and the
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gravitational energies of a fluid element per unit mass remains a
constant when this fluid element moves through the scales (see
equation 9 in Paper I). The second equation, coming from the
continuity equation, gives a formula for the accretion velocity,
expressed through the density and the scale (see equation 15 in
Paper 1). Giving explicit forms for the energies per unit mass, we
solved the equations approximately up to the leading-order term in
the series expansion, which assumes that the PDF is a power law, in
two cases: when the core is negligible (the fluid element is too far
from the core) and when the core is important (the fluid element is
near to the core). In the first case, we obtain a solution with a slope
of —3/2 (which is a counterpart to the density profile with a slope
of —2); this presumes a dynamical equilibrium, in the outer shells
of the ball, between accretion and gravity. In the second case, we
have a free-fall solution with a slope of —2 (which is a counterpart
to the density profile with a slope of —3/2) and a balance between
the accretion and gravity of the core.

Our results correspond to those of previous studies. Larson (1969)
and Penston (1969) have investigated a collapsing homogeneous
gas ball without accretion. The main forces are self-gravity and
isothermal gas pressure. They have solved the equations of motion
numerically and have obtained a density profile with a slope of
—2 in the outer layers. Also, Shu (1977) and Hunter (1977) have
treated the problem analytically and Shu (1977) has obtained two
density profiles: —2 for the outer layers (but, in static equilibrium,
pressure supports against gravity) and —3/2 for the free-falling inner
layers near to the singularity (Shu’s solution describes the so-called
inside-out collapse). Using numerical simulations Naranjo-Romero,
Viazquez-Semadeni & Loughnane (2015) have investigated a col-
lapsing core embedded in a larger medium (called the cloud) and
accreting material from the latter. They have also obtained a density
profile of —2 in the outer layers of the core during its collapse
in the cloud. Recently, Li (2018) has obtained a density profile
with a slope of —2 when gravity, accretion and turbulence interact.
He claims that this slope is universal for scale-free gravitational
collapse and that an isothermal state is not a necessary condition.
There are confirmations also from observations. In systems such as
molecular clumps forming star clusters, the radial density profile is
very close to —2 (Mueller et al. 2002; Evans 2003; Wyrowski et al.
2012, 2016; Palau et al. 2014; Csengeri et al. 2017; Zhang & Li
2017).

In this paper, we change the model slightly and we set ourselves
three main goals.

(i) The first goal is to rewrite the main equations in terms of the
density profile. In Paper I, we wrote the equations in the form that
asked for the PDF as a unknown quantity. However, this meant that
we lost any physical insight, which is why we want to eliminate this
disadvantage. In addition, we show more clearly the way in which
our two solutions are obtained.

(i) The second goal is to reconsider our assumptions in Paper
I, concerning the gravitational potential caused by the outer shells
with respect to the position of the fluid element. In Section 3.2 of
Paper I, where we discuss the explicit form of the gravitational term,
we argue that only the gravitational potential that originates from
the inner shells of the ball with respect to the position of the fluid
element should be included in the equation. Our argument is that
the outer shells do not contribute to the gravitational force. This
argument is right, because the first derivative (taken with a negative
sign), with respect to the radius, of the full gravitational potential is
the force. The differentiation eliminates the contribution of the outer
shells, which means that the potential of the inner shells determines
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the motion of the fluid element through the scales. However, we use
the equation of balance of the energies per unit mass and we have
to work with the full gravitational potential. In this present paper,
we consider the influence of the outer shells of the cloud and we
conclude that the potential caused by them has a negligible effect
on the two solutions that we obtain. Adding a constant term, we
also account for the gravitation of the outer masses of the cloud
(this is a slight change to the model), assuming that they obey radial
symmetry. In contrast to the unimportant outer shells of the cloud,
the gravitation of the outer masses is significant for the energy
budget in equations (12) and (13).

(iii) The third goal is to investigate the main equation when the
kinetic turbulent term is independent, formally, of the accretion and
scales according to Larson’s law. We suggested this equation in the
discussion of Paper I (see equation 28 in Paper I). This matters
because it is important to see if the two solutions do exist in the
general case, not only in the particular case considered in Paper I.

This paper is organized as follows. Section 2 is dedicated to a
derivation of the equation for the density profile. In Section 2.1, we
give the explicit forms of the terms in the above-mentioned equation.
We also account for the potential of the outer shells of the cloud
with respect to the position of the fluid element in explicit form and
we introduce the potential of the outer masses with respect to the
cloud. Then, in Section 2.2, we obtain the equation for the density
profile. We continue in Section 3 by analysing the possible solutions
of the latter equation and we obtain solutions for two cases: far from
the core (Section 3.1) and near to the core (Section 3.2). We discuss
our results and give our conclusions in Section 4.

2 EQUATION FOR THE DENSITY PROFILE

In this section, we aim to rewrite the main equations in terms of the
density profile o(€), an intrinsic characteristic of our cloud, and to
obtain an equation that determines the latter quantity as an unknown
function. In Paper I, we derived equation (20), which determines
the quantity Q(s), where s = In (p/p.) is the log-density and p. is
the mass density at the outer boundary of the cloud. Q(s) is simply
the dimensionless cloud radius. In the present paper, we denote the
latter as ¢ and it takes values in the range ¢y < ¢ < 1, where the lower
limit £, is the size of the small and dense core in the centre of our
cloud, and the upper limit 1 is a counterpart to the outer boundary of
the cloud. For simplicity, we use the dimensionless density profile
o) = p(€)/pe, which is a function of the dimensionless radius
¢, and is obviously the inverse function of Q[s(o)] = €(0). As
we are also interested in obtaining of an expression for the PDF,
equation (9) gives the link between the latter and £(p).

Starting from the equations of the medium (see Section 3.1 in
Paper I) under the assumption of a steady state, we obtain the
equation for conservation of the total energy of a fluid element,
per unit mass, during its motion through the cloud scales. This
means that the sum of the averaged kinetic, thermal and gravitational
energies, per unit mass, is a constant with respect to ¢, or

d B
(V772 + () + (90 =0. (1)

2.1 Explicit form of the terms in equation (1)

In this subsection, we derive the explicit form of the terms in
equation (1), taking into account the model presented in Paper I
(Section 2) and also briefly mentioned in Section 1. We start with
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the kinetic energy term,

(v2) = (v) + (v2), @
where (vlz) is the turbulent kinetic energy per unit mass and (vf) is
the accretion kinetic energy per unit mass. The proof that equation
(2) is satisfied is given in Paper I (Section 3.2).

Our spherically symmetric cloud is ensemble averaged, which is
why we choose to apply a standard scaling relation for (v2):

ut [ 1.
() = (2
Here, up and 0 < 8 < 1 are, respectively, the normalizing factor
and the scaling exponent of the turbulent velocity fluctuations in the
standard law u = uoL? (Larson 1981; Padoan et al. 2006; Kritsuk
et al. 2007; Federrath et al. 2010). T;) = (u(z)/cz)(lc/pc)zﬂ is the ratio
of the turbulent kinetic energy per unit mass of the fluid element
at the boundary of the cloud to the thermal energy per unit mass.
This form of the turbulent kinetic energy per unit mass is different
from the expression used in Paper I (equation 12 there), which
determines the dependence of the turbulence from the accretion. In
contrast, in this paper, we presuppose that the turbulence is formally
independent of the accretion. The explicit form of the accretion
kinetic term has been obtained from the continuity equation in
Section 3.3 of Paper I, written as

(v7) = Ago(®) ™. “)

From the considerations in Section 3.3 of Paper I, we find
that Z4Q(Z)2<v§) = const({) = Ap. Taking into account that the
quantities are dimensionless and are normalized to the cloud size
(for the scale), to the cloud edge density (for the density) and to
the sound velocity (for the accretion velocity), we can obtain Ag
if we take £ = 1 (i.e. at the cloud boundary). Then, o = 1 and
(v2) = u /cZ, which is the ratio of the accretion kinetic energy
term at the boundary of the cloud and the thermal kinetic energy
per unit mass.

The thermal potential is (s) = s, because in our model the
logarithmic density is averaged by assumption. The same is valid
for the density: 0 = (o).

The averaged gravitational potential is given by

G M) G M,
lec2 ¢ lec? ¢

2B
) 0P = T,0%F. 3)

(9) = + (™), (5)
where ¢ is the radius at which the fluid element resides at the given
moment. Also, M(¢) = 3M; féi £20(£) d¢’ is the mass of the inner
shells corresponding to ¢, where M* = (4/3)7tl2 p. is a normalizing
coefficient whose physical interpretation is given in Section 3.2 of
Paper 1. Hence, the first term in equation (5) is the gravitational
potential caused by the shells that are inner with respect to the fluid
element. M, is the mass of the dense core at the centre of the cloud
and the second term in equation (5) is its gravitational potential at
scale £. The last term in equation (5) can be written as

3GM:N (! e
(¢€Xt) I < C ) / e/Q(e/) del + ‘(/:;2 ,
4 s

2
lec:

where the first addend is the gravitational potential caused by
the outer shells corresponding to ¢ and the second addend is the
potential caused by the masses outside the cloud. For the second
added, we assume that all the masses outside the cloud give rise to
potential ¥*** in the volume of our cloud. Also, ¥* does not depend
on the position of the fluid element during its motion through the
scales. Of course, this is a simplification. Our assumptions are valid
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as long as the material outside the cloud obeys a radial symmetry.
In reality, this is not the case. However, this is in agreement with
the spirit of our model. Finally, (¢) can be expressed by the density
profile o(€):

topn ! ’ 1
3G My [, (Pet)dl 3G M
— T PP T e e/ Z’dé/
0 == : o / o)
4
GM()] wexl

- : 6
2.t c? ©)

2.2 Derivation of the equation for p(£)

With this preparation, equation (1) can be written as

f( Z/ZQ(E/) de’

d
—{Aog(o*fumzﬂ+21n[g(e)]—3Go Lo ;

de
1

’ ’ ’ G,
—3(;0/13 oty de — 7} —0, )
14

where Go = 2G/c)(M}/l.) and G = 2G/c})(My/l.) are di-
mensionless coefficients whose physical meanings are clarified in
Section 3.4 of Paper L.

Let us denote the expression within the curly brackets in equation
(7) by Ey. This is the total energy per unit mass of the fluid element.
It is clear that ¥*'/c? contributes to Ey and calibrates the total
energy. If we compare the total energy of the fluid element in the
present work (E(I,I) and in Paper [ (E(I)), we have the relation: Eg =
E} — /¢ (for the role of the gravitational potential, caused by
the outer masses, in the cloud’s energy balance, see Ballesteros-
Paredes et al. 2018).

Then we have

¢
ZQQ(Z/) de’
Apo(0) €™ + Toe* + 21n[o(6)] — 360%
1
’ ’ ’ G
—3Gy | o(t")dt — - = Ey. ®)
¢
which is a non-linear integral equation for the function o(¢). A
solution for o(¢) would allow us to find the PDF of mass density [if
we know the inverse function £(0)]:

dé(o)

_ 2
PDF(¢) = —3£(¢) din(o)’

C)]

3 STUDY OF THE EQUATION FOR THE
DENSITY PROFILE

We search for a solution of the form o(¢) = £77, which corresponds
to a power-law PDF, p(s) o< exp (¢s) with g = —3/p (see equation 9).
The motivation for this ansatz is the same as in Paper 1. A solution
of this type is the simplest possible and, besides, the star formation
process occurs in the power-law tails of the PDFs. A more general
approach would be to ask for a solution in the form of a series of
increasing exponents — with a small parameter (1 — £) — but this is
not our goal in the current work.
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Making this substitution in equation (8) after some algebra, we
obtain

I 28 EZ*p EO 3—-p
Aoe P +To[ +2(—p)ln€—3G03 1 - 7
-Pp

—3Gp——— — G~ = E,. (10)
P

The expression on the left-hand side of the equation depends on ¢,
which means that the equation can be satisfied only approximately.
Different assumptions and approximations yield different solutions
for the parameter p, which is the slope of the density profile.

We study the following two cases. In the first case, the core can be
neglected (i.e. Ao, Ty, Go > G)), and we search for a solution when
the fluid element is far from the core (1 2 £ > £;). In the second
case, the core has a significant contribution or Ay, Ty, Gy ~ Gy, and
the fluid element is near to the core (£ ~ £).

3.1 Solution far from the core

When the core is neglected, equation (10) takes the form:

_ o e27p EO 3—-p
Aoe P +T()Z +2(—p)ln€—3G03 11— ?
-p

—3Gg——— = Eyt°. (11)
P

Before we continue, we should comment on the thermal term and the
second addend in the parentheses of the gravitational term resulting
from the inner shells. Regarding the thermal term, the turbulent and
accretion velocities are supersonic by assumption, which means that
the pressure term in the equation of motion (see equation 4 of Paper
I) is negligible compared with the kinetic terms. The thermal term in
our equation comes from the pressure term, so it can be neglected.
It might be important only if the obtained solution for p leads to
exponents for accretion and turbulent terms, which are positive.
The second addend in the parentheses of the gravitational term is
also negligible, because according to observations and simulations,
typically 1 < p < 2, and far from the core ¢y/¢ < 1, and then
(Lol ~P < 1.

The exponents of the main terms, obtained with our ansatz,
are 2p — 4, 2B, 2 — p and 0, respectively. An approximate
solution of equation (11) can be obtained in the following way.
With the approximations commented on in the previous paragraph,
equation (11) contains only terms that have power-law dependence
on £. If the exponents of all the terms are equal, then the powers of £
factor out and only constants remain. The questions that arise then
are which terms have equal exponents and whether they dominate
over the rest of the terms. Because 0 < ¢ < 1, the lower powers
dominate over the higher powers. A non-trivial solution of equation
(11) can be found only if the number of leading terms is at least
two. If just one term dominates, it remains unbalanced and the only
solution is a trivial solution. In order to find a solution for p, we
do the following. We choose a pair of terms and hypothesize that
their exponents are equal and that the remaining terms are inferior
or, at most, equal to them. Equating the two exponents, we obtain a
simple equation for p. We solve this, evaluating the exponents of all
the terms with the obtained value, and we check if our hypothesis
is confirmed. The same method is applied to all possible pairs of
terms (Zhivkov 1999; Riley, Hobson & Bence 2006).

Let us, for example, assume that the turbulent term and the
accretion term have equal exponents and that they dominate over
the other terms in equation (11). This assumption results in the
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Table 1. Comparison of the exponents of the main terms in the equation (11)
and the corresponding roots for p.

Exponents 28 2p —4 2—p 0
28 - B+2 21— B) _
2p—4 B+2 - 2 2
2—p 2(1 - pB) 2 - 2
0 - 2 2 -

Table 2. Values of the exponents of the main terms in equation (11),
according to every root obtained in Table 1.

Roots Exponents

28 2p—4 2—p 0
2 2B 0 0 0
B+2 2B 2B —p 0
21 -8 28 —4p 2 0

following simple equation for p: 28 = 2p — 4. Its root, B + 2, is
given in the first row and second column of Table 1.

As a next step, we use the obtained root for p and evaluate the
values of the exponents of all the terms in equation (11). The results
are given in the second line of Table 2. With this root just one of
the terms, the one whose exponent is — 8 dominates over the others.
As it appears, the assumption is not justified. Besides, the dominant
term remains unbalanced. Hence, this root does not allow us to find
a non-trivial solution and we have to check the other possible pairs
of exponents.

The roots for p that we obtain with the procedure described above
are 2, f + 2 and 2(1 — B). This is made clear in Table 1. In Table 2,
the values of the exponents for every root are given. To make a
conclusion about the existence of a solution of equation (11), we
have to remember the range of 8: 0 < g < 1. If 8 = 0, the three
cases are equivalent and there is only one solution, p = 2 (¢ =
—3/2), and the energy balance is

Ao+ Ty — 3Gy = Ey.

If B > 0, then there exists a solution only if p = 2 (¢ = —3/2), and
the energy balance is

Ay — 3Gy ~ Ey.

These approximate equalities express the balance of the energy
components. They are valid only if and as long as the remaining
terms can be neglected.

The last term on the left-hand side in equation (11) deserves
special attention. This term is the gravitational potential caused by
the outer shells of the cloud with respect to the fluid element. If p =
2, then the denominator of this term equals zero but the numerator
also vanishes. Applying the L’Hospital’s rule, we can obtain a non-
infinite limit:

1—e*r
2-p
Then the entire gravitational term is written as —3Gy[l —
In(£)] >~ —3Gj, because if the fluid element is far from the core,

then 1 2 € > £, and In (£) ~ 0.

Moreover, when p = 2, if we take into account the considerations
in Section 4.1 of Paper I, concerning the average density of the hole
cloud, then 3Gy = (G). This is the averaged gravitational energy
per unit mass of the fluid element for the entire cloud. The terms for
the accretion kinetic and turbulent kinetic energies have a similar

—> —1In(¥).
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property, Ag = (A) and Ty = (T), because accretion does not scale
if p = 2 and the turbulent term is important only if it does not scale.
Finally, when the core is neglected, there exists only one solution,
0(£) = €72, where the PDF is PDF(s) A (3/2)exp (— 3s/2), but there
are two possibilities for energy balance: (i) if the turbulence does
not scale (8 = 0), then
(A) +(T) — (G) = Eo; (12)
(ii) if the turbulence scales (8 > 0), then

(A) = (G) =~ Eq. (13)

3.2 Solution near to the core

When the core is not negligible (the fluid element is near to the
core), equation (10) can be written as

— 3—p
Ao 024 28 _ _ el (L)
0 + Tol”” +2(—p)Int 3’603 1 ;
-P

1— >
-3Gy——
2-p

— Gt = Ept’. (14)

According to the same arguments as in the previous section, we
can neglect the thermal term. The gravitational term, accounting for
the potential of the inner shells, is also ~0, because near to the core
£ ~ £y, and the expression in the parentheses vanishes. Hence, the
exponents of the main terms are 2p — 4, 28,2 — p, —1 and 0. We
can apply the same method for obtaining the solutions for p as in
the previous section, but there is a simpler physical consideration.
If the core is important, then the leading-order exponent must be
—1. In this case, there are two possibilities. The first possibility is
that the gravitation of the core is balanced by the gravitational term
resulting from the outer shells of the cloud and 2 — p = —1 leads
to p = 3. However, the energy balance fails because both terms are
negative. The second, and only, possibility is that the gravitation of
the core is balanced by the accretion term, and it requires p = 3/2.
Therefore, the only solution in this case is o(£) = £~¥2, where the
PDF is PDF(s) & 2exp (— 2s), and the energy balance is

Ag— G ~0. (15)

This is the well-known free-fall solution from Paper I (see Section
4.2 there).

4 DISCUSSION AND CONCLUSIONS

In the previous sections, we have given the main equations in the
terms of density profile and we have obtained expressions with
more physical insight, which gives the model more clarity. In
addition, using Tables 1 and 2, we have illustrated the method
of obtaining the solutions of equation (10), which is also clarified
in Section 3.1. With this, we consider our first goal to have been
accomplished.

Our second goal was to investigate equation (1) when we account
for the gravitational potential caused by the outer shells with respect
to the position of the fluid element, in contrast to our previous
paper. According to the considerations in Sections 3.1 and 3.2, we
can conclude that the gravitation of the outer shells of the cloud is
not important for the two cases that we have studied. So our two
solutions are not influenced by the new term on the left-hand side
of equation (8). This is not the case with the constant gravitational
term ¥ /c? caused by the outer masses of the cloud. It contributes
to the total energy of the fluid element £y, and we believe that it is of
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key importance for the right energy balance in equations (12) and
(13) (Ballesteros-Paredes et al. 2018).

Regarding our third goal (i.e. to present the kinetic turbulent
energy in a more general form), we should note that both solutions
we have obtained in this work are the same as the solutions in Paper
1. However, there are differences in the equations of energy balance.
For the second solution ¢ = ¢~%2, the energy balance has preserved
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its form as in Paper 1. This is a free-fall solution and the energy
balance per unit mass for the fluid element is Ag — G, ~ 0.

For the first solution ¢ = £72, there are two regimes. If 8 = 0,
then the turbulent kinetic energy could be important: (A) + (T) —
(G) ~ Ey (this holds only if Ty ~ Ay). The lack of scaling reminds
us of coherent cores (Goodman et al. 1998), whose scales are of
order ¢ ~ 0.1 pc. This phenomenon (8 = 0) is observed, also, at
larger scales in Rosette molecular cloud (see Veltchev et al. (2018),
Section 5.4). If B > 0, then the turbulent kinetic energy is not
important: (A) — (G) =~ Ey. The latter case strongly supports the
idea for hierarchical and chaotic gravitational collapse at all of the
cloud scales (Ballesteros-Paredes et al. 2011a,b, 2018; Ibanez-Mejia
et al. 2016; Elmegreen 2018).

Briefly, we note that our model is an attempt to give an abstract
statistical description of classes of molecular clouds that have the
same PDF, size €., core size ¢y, edge density p., core density pg
and temperature 7. The ball (which is the average representative of
the class), obeying radial symmetry, is an idealized object, but this
is the simplest model that we could construct. It is clear that we
have lost the specific morphology and physics of every cloud from
the class, but we believe that we can obtain the main properties of
the class members.

The compatibility of supersonic turbulence and spherical sym-
metry is the major caveat of our model. Large-scale supersonic
turbulence gives rise to shocks that might result in substantial
departures from the spherical symmetry. Such departures will
induce a non-symmetric gravitational potential and hence will have
influence over gravitational terms in our equation. It is difficult to
say precisely how these departures will affect the energy balance
equations, but we consider our approach to be a first step in this
task.

Another significant problem is that the second solution, near
to the core, is a free-fall solution with a profile p = 3/2 (¢ =
—2). Some modern simulations (Kritsuk, Norman & Wagner 2011)
and observations (Schneider et al. 2015), where two power-law
tails occur, report a different profile for the second tail: p ~ 3
(g ~ —1). This value can be explained, according to the authors
of the cited papers, by a decrease of the mass flow rate (fall under
the action of gravity) from the larger to the smaller scales of the
cloud. Among the possible reasons for such a decrease are non-zero
angular momentum of the small dense structures (of the dense core
in the centre of the cloud, in our case; Kritsuk et al. 2011; Schneider
et al. 2015), large opacity, pressure increase as a consequence of
temperature increase (i.e. the system leaves the isothermal regime),
the presence of magnetic fields and the back-reaction on the cloud
from the newborn stars (Schneider et al. 2015), etc. All this physics
is neglected in our model, which is why the inconsistency between
the second slopes seems normal. This is a hint of the possible
directions for an elaboration of the model. One way is to suggest
that near to the core the system leaves the isothermal regime and
we have a polytropic equation of state: pg o p' and I' # 1. This
change in thermodynamics leads to the following equation near to

the core:
r 0 0\
— =D 3G, 1— (=2
r—1 3—p ¢

—3Gg——— — G = Ey°. (16)
P

A06217—4+T0£2/3 +

We leave the study of this equation for future work.
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