Създаване на комбинирани модели облекло чрез съчетаване на класически равнинен метод за проектиране с тримерно проектиране

Магдалена Павлова, Радка Атанасова

Разработката предлага дизайнерско проектиране на авторски комбинирани модели авангардно облекло на основата на подобие с природни био- и зооформи. Изделията се състоят от вътрешен слой (подплата) от еластичен текстилен материал с раменна и поясна част, който се облича под тримерно принтиран външен (горен) слой за поясната част на облеклото. Двумерната конструкция е разработена автоматизирано по равнинен метод за проектиране. Тримерният външен слой на облеклото е проектиран с програма с общо предназначение за 3D дизайн на промишлени изделия. За производството на моделите се прилагат иновативни индустриални технологии за наслояване на материал при използване на 3D принтер.

Ключови думи: комбинирани модели облекло, равнинен метод за проектиране, тримерно проектиране, принтиране на облекло.

Creating Combined Garment Models by Matching a Classic Flat Pattern Making Method with 3D Design

Magdalena Pavlova, Radka Atanasova

In the paper are presented three designs of authors' combined models of avantgarde clothing based on the similarity of natural bio- and zooforms. The apparel consists of an inner layer (lining) of elastic textile material with top and bottom part, which is dressed under a three-dimensional printed outer (upper) layer for the bottom part of the garment. The two-dimensional construction has been CAD developed with a flat pattern making method. The three-dimensional outer layer of the garment is designed with a universal 3D design program for industrial products. Innovative industrial technology for the layering of material with 3D printer for producing the models is used.

Keywords: combined garment models, flat pattern making method, three-dimensional design, 3D-printing of apparel.

Въведение

В ерата на високите технологии дизайнът на облекло се насочва в посока на индивидуализация. Сериозните екологични проблеми поставят въпроса за производство на изделия при използване на безотпадни технологии с респект към изчерпаемите природни ресурси на планетата. Зa решаването на тези проблеми дизайнери, инженери и архитекти работят в екип, предлагайки интелигентни решения за приложение на 3D печатането при производството на облекло [2], [7], [8].

Фиг. 1а. Диз. Ирис Ван Херпен [13]

Въпросът относно създаване на комбинирани модели облекло чрез класичес-ки равнинен метод за проектиране С тримерно проектиране и принтиране на облекло става значим и актуален. Тези тенденции оказват влияние върху модата дизайнери като Iris van Herpen, Michael Schmidt, Danit Peleg, Zac Posen и Живко Седларски предста-вят облекло/изкуство, изработено тримерно от полимерни материали и метал (Фиг. 1а,б).

Фиг. 1б. Диз. Живко Седларски [14]

В момента и NASA експериментира с 3D принтери, за да създаде нов вид костюми за своите астронавти [15].

Същинска част

1. Ескизи на авторски модели. Предложените модели са вдъхновени от живата и неживата природа. Приложен е т.нар. дизайн на облекло на основата на подобие с природни био- и зооформи [1]. Идеята е да се попълни пазарната ниша в сегмента на авангардното облекло.

За производството на проектираните модели се прилагат иновативни индустриални технологии за наслояване на материал, което се извършва с внимание към изчерпаемите ресурси на планетата.

При композиционното изграждане на проектираните авторски модели за тримерно проектиране и принтиране са използвани изразни средства като симетрия и асиметрия. Някои от формите са с ритмически строеж при закономерно, последователно редуване на съизмерими елементи на формата. Тази зрителна динамика свързва

Фиг. 2. Ескизи на авторски модели Фиг. 2а). Модел 1-1 Фиг. 2б). Модел 1-2 Фиг. 2в). Модел 2

частите на формата в единно цяло и влияе положително на емоциите при възприятието на проектираните модели облекло. Връзката между основните елементи в композицията на моделите е постигната въз основа на тъждество (равенство) и нюанс (сходство), а контрастните отношения с противопоставяне на плътно и прозрачно, ажур (дантела) и плътна маса внасят допълнително разнообразие и динамика и засилват остротата на възприятие на проектираните изделия. Моделите са представени на Фиг. 2.

2. Автоматизирано проектиране на моделите чрез класически равнинен метод. Двумерната конструкция е за облекло вътрешен слой (подплата) с обединени раменна и поясна част, което се облича под тримерно принтиран външен (горен) слой за поясната част на изделието. За основна конструкция е използвано дамско облекло от еластични материали. За разглежданата група площни текстилни материали е отчетена относителна надлъжна деформация ε = 4%. Следователно за преизчисляване на надлъжните конструктивни участъци от основната конструкция коригиращият коефициент е k≈0,96.

Фиг. За. Конструктивен чертеж на основната конструкция

А. Необходими анатомични измерения

Базовата конструкция е оразмерена за дамска фигура стандартен типоразмер 44 (164/88/96) и е без прибавки за шев. Хоризонталните конструктивни участъци са оразмерени със значително занижени, но с положителна стойност прибавки за свобода: Пс(лт) = 0,25 сm, Пс(лр) = 1,75 cm, Пд(лт) = 1,5 cm. При това големините им са съобразени с допустимия външен натиск върху телесната повърхност [3, 5]. По линия на гърдите и по линия на ханша не са предвидени прибавки за свобода, за да приляга плътно изделието към тялото.

Б. Оразмеряване на конструктивните участъци

Функционалните зависимости за оразмеряване на конструктивните размери са съгласно [5]. Изчислените стойности на конструктивните размери при Швт = 3,5 cm са както следва: Д_{ГР (ЛГ)} = 19,7 cm, Д_{ГР (ЛТ)} = 38,0 cm, Д_{ГР (ЛХ)} = 57,0 cm, Д_{ГР (ЛД)} = 96,4 cm, широчина на конструктивната мрежа по линия на гърдите Ш_{ЛГ} = 46,1 cm, Ш_{ГР (ЛГ)} = 16,6 cm, Ш_{ПМУ (ЛГ)} = 9,8 cm, Ш_{ПР Ч (ЛГ)} = 17,6 cm, Ш_{ВР ИЗВ} = 6,34 cm, В_{ВР ИЗВ} = 2,11 cm, δ = 3,8 cm, Ш_{Р (ГР)} = Ш_{Р (ПР Ч)} = 14,7 cm, Ш_{ЛТ} = 34,8 cm, Ш_{ЛХ} = Ш_{ЛД} = 48,0 cm, Р_{СВ (СТР У-К)} = 7,8 cm (1/2 = 3,9 cm), Ш_{ДОП (ЛХ)} = 1,9 cm (1/2 = 0,95 cm), tg $\alpha_{P (ГР)}$ = 0,29, $\alpha_{P (ГР)}$ = 16,2°.

Фиг. Зб. Конструктивен чертеж на моделната разработка на модел 2

В. Алгоритъм за построение на основната конструкция. Основните функции, които се използват за геометричното й построение при работа с приложна графична програма, са дадени в [5]. В таблицата е посочен един примерен начин за задаване и модифициране на съответните геометрични обекти от конструкцията. В настоящата разработка за автоматизирано изчертаване на конструкцията са използвани възможностите [10] на специализираната за облекло САD програма AccuMark, версия V10 на фирма Gerber Technology, САЩ. Създадена е таблица с размерите на детайлите Rule Table: BG-LADIES, включваща размери от 42 до 52, по която изделието може да бъде градирано при нужда. Детайлите са наименувани както следва: конструктивна мрежа: BODY BASE, предна част: BODY FRONT, гръб: BODY BACK и са запаметени в областта за съхранение Storage Area: EMF2019. Конструктивният чертеж на основната конструкция е представен на Фиг За.

Г. Алгоритъм за моделиране в CAD програма AccuMark. Основните стъпки от разработения примерен алгоритъм за автоматизирано построение на моделната разработка на модел 2 (Фиг. 1в) е представен в Табл. 1. Поясната част на изделието е права пола без свивки. Моделът е във фантазиен стил и може да се използва за облекло за спортни танци [4], както и за специални поводи [6, 9]. Готовите детайли за ушиване на модела са наименувани както следва: предна част: BODY FRONT-1 и гръб: BODY BACK-1 (Фиг. 3б).

Таблица 1

No	Наименование на стъпката	Функция в графичната система	Параметри
1	2	3	4
1	Извеждане на основната конструкция на	File/ Open	BODY FRONT, BODY BACK

1	2	3	4
2	Прибиране на страничния шев към тялото	Modify/ Point Act/ Move	Т6≡Т6, Г4→Г8
	по линия на гърдите	Smooth/Line	Т5≡Т5, Г4→Г8
		First Line	Г4Г8 = 1,0 cm
3	Удълбочаване на ръкавната извивка	Create/ Point/ Mark	Г8Г9 = 2,0 cm
4	Имитация на зашиване по страничния шев	Modify/ Piece Act/ Set	
	на предната част и гърба за построяване на	and Rotate	
	плавно преминаващ от предната част към	Match Pt on Target Piece:	Г8 (пр.ч.)
	гърба горен контур на изделието	Match Ln on Target Piece:	Г 8Г 9 ОТ ПР.Ч. Г 8 (гр.)
		Set Pt on Set Piece:	ГО (гр.)
		Ang:	0
5	Разделяне на линията на средния шев на	Modify/ Line Act/ Split	Г2Г8∩ВТ3→Г2
	гърба в точката, указваща линия на гърдите		
6	Построяване на спомагателна линия за	Create/ Line/ 2 Point	28-29
	оформяне на горния контур на гърба	Line/ Perp On Line	$\Gamma 2-28 = 2,0 \text{ cm}$
7	Отрязване на построената линия до	Modify/ Line Act/ Clip	28-29∩P3Г8→29
	ръкавната извивка		
8	Създаване на две спомагателни точки за	Create/ Point/ Mark	20.20.20.20
	оформяне на горния контур на гъроа	\checkmark $\mathcal{A}\mathcal{B}$ \mathcal{B} $\mathcal{A}\mathcal{B}$	28-30=30-29
9	Разделяне на линията за местоположение-	Modify/ Line Act/ Split	Γ8Γ1∩B18T7→Γ6
	то на свивките в предната част в точката,		
	указваща линия на гърдите		
10	Измерване на разстоянието от линията на	Verify/ Measure/	Г6Г7 =
	гърдите до точката, указваща действител-	Straight	= 4,33 cm = a
	ния център на гърдите		
11	Създаване на спомагателна точка за	Create/ Point/ Mark	Г6Г10 = а
	оформяне на горния контур на пр. ч.		
12	Изчертаване на спомагателна линия за	Create/Line/2 Point	Г10-32 ⊥B10T1
10	оформяне на горния контур на пр. ч.	Ln/ Perp Off Line	
13	Изчертаване на спомагателна линия за	Create/ Line/ Offset	33-34 110-32
11	оформяне на горния контур на пр. ч.	Even	1 10-33 = a
14		Create/ Point/ Mark	33-35=25 /0(33-34)
15	Оформяне на горния контур на пр. ч.	Croate/Line/Offset	36-T8 T7F10
15		Even	T7T8 = 50 %(T1T7)
16	Изчертаване на спомагателна линия за	Create/Line/2 Point	Г9Г10
10	оформяне на горния контур на пр. ч	Line/ 2 Point	
17	Изчертаване на спомагателна пиния за	Create/Line/2 Point	Т9Г11
	оформяне на горния контур на пр. ч.	Line/ 2 Point	
		✓ ДБ/ Midpoint	T6T9 = 50 %(T6T7)
		🗸 ДБ/ Midpoint	Г9Г11 = 50 %(Г9Г6)
18	Удължаване на начертаната спомагателна	Modify/ Point Act/ Move	Г11-37 = а
	линия	Point Line	
19	и острояване на горния контур на предната	Create/ Line/ Digitized	24.25 510
	част и гъроа посредством две гладки криви	✓ ДБ/Curve	54,55,110 Γ10 37 Γ9≡Γ9
	ИИНИИ		30,31,28
20	Извеждане на отделните детайли предна	Create/ Piece/ Trace	Piece Name:
	част и гръб от сборния чертеж с моделната	Mirror	BODY FRONT-1,
	разработка	Normal	BODY BACK-1
21	Запаметяване на детайлите в съответната	File/ Save As	
	област за съхранение	✓ Storage Area:	EMF2019

3. Автоматизирано тримерно проектиране на моделите. За проектиране на тримерно принтирания външен (горен) слой за поясната част на трите модела е използвана графичната среда на програма Autodesk Inventor Professional 2019 [11]. На Фиг. 4 е представен 3D изглед на горния слой на поясната част на модели 1.1 и 1.2. Моделът е разработен като цялостна, асиметрична повърхнина, силно драпирана по целия периметър. Представени са страничен изглед и изглед на сянката на полата по линия на дължината. Моделът може да бъде позициониран по един от начините, представени на на Фиг. 2а и 2б или съгласно други лични предпочитания.

Фиг. 4. 3D изглед на горния слой на поясната част на модели 1.1 и 1.2

Фиг. 5. 3D изглед на елементите и на разгънатия асемблиран вид на горния слой на поясната част на модел 2

На Фиг. 5 е представен 3D изглед на елементите (без колана) и на разгънатия асемблиран вид на горния слой на поясната част на модел 2. Моделът е разработен като съвкупност от 4 вида самостоятелно проектирани, прозрачни елемента и се закопчава в

областта на талията, на гърба на тялото. Трите вида повтарящи се капковидни елементи, които оформят дизайна на полата са с различна дължина. Това дава възможност да се виждат проектираните върху тях флорални и ажурни мотиви. Елементите са прикрепени шахматно към колана само в горната си част и падат свободно. Моделът може да бъде позициониран върху различни по цвят подплати, в зависимост от желаната визия - Фиг. 5 и Фиг. 7. Елементите може да се изработят и от плат – Фиг. 6.

Фиг. 6. Визии на елемент от модел 2, изработен от Деним

Алгоритмите на базовите стъпки за проектиране на външната, поясна част на модели 1.1, 1.2 и модел 2 са представени в табличен вид, съответно в таблици 2 и 3. Оразмеряването е съгласно данните в т. 2Б от настоящата разработка. Размерите на осите на елипсите, използвани по линия на талията са изчислени по формула (1), съгласно приближението на Рамануджан.

$$c \approx \pi \left[3(a+b) - \sqrt[2]{(3a+b)(a+3b)} \right],$$
 (1)
където: *с* – периметър; а, *b* – оси.

Фиг. 7. Визия на модел 2 в разгънат вид, върху черна подплата

Таблица 2

Алгоритъм от	базови стъпки за 3[проектиране на поясна	а част на модели ′	1.1 и 1.2
--------------	---------------------	-----------------------	--------------------	-----------

No	Наименование на стъпката	Функция в графичната система
1	2	3
1	Проектиране на Part	New/ Metric/ Standard (mm).ipt
2	Избор на работна равнина	New sketch / Start 2D sketch / xz Plane
3	Оформяне на отвора на полата по линия	Ellipse / Center / Constrain – Coincident /
	на талията	Dimension
4	Схематично оформяне на проекцията на	Ellipse / Center / Constrain – Coincident /
	отвора /сянката/ по линия на дължината	Dimension
5	Край на скициране	Finish Sketch
6	Драпиране	New Sketch / Start 2D sketch / yz Plane /
		Spline Control Vertex
7	Определяне на минималната и	Line / Dimension / Constrain – Vertical /
	максималната дължина на драпировката	Construction
8	Край на скициране	Finish Sketch
9	Създаване на работни точки върху	End↑ /Origin / yz Plane / Work Point /
	елипсите	End↓
10	Проектиране	Project Geometry / Work Point / Ellipse /
		Constrain-Horizontal
11	Край на скициране	Finish Sketch
12	Създаване на пространствена крива	New Sketch / Start 3D Sketch /
		Intersection Curve / Define Intersecting
		Geometry / Ellipse - Spline

1	2	3
13	Край на скициране	Finish Sketch
14	Драпиране /създаване на драпирана	Loft / Curves / Section / Sketch1 - 3D
	повърхнина/	Sketch1 / Output / Surface
15	Трансформиране на повърхността в	Thicken / Offset / Select Surface / Face /
	твърдо тяло	Distance / Solid
16	Избор на материал	ABS
		Transparent Light Orange

Таблица 3

Алгоритъм от базови стъпки за 3D проектиране на поясна част на модел 2	
--	--

No	Наименование на стъпката	Функция в графичната система
1	2	3
1	Проектиране на първи Part - Create 2D and 3D objects /долна редица от седем идентични елемента на полата/	New/ Metric/ Standard (mm).ipt
2	Избор на работна равнина	Start 2D Sketch / yz Plane
3	Горна част на елемента /лява половина/	Line / Center / Constrain - Horizontal
4	Определяне на дължината	Line / Center / Constrain – Vertical / Centerline
5	Определяне на ширина на долна част на елемента /лява половина/	Line / Center / Constrain – Horizontal / Construction
6	Оформяне на наклона на елемента /лява половина/	Line / Point to Point
7	Оформяне на овала в долната част /лява половина/	Spline Control Vertex / Point to Point
8	Изрязване на излишните елементи	Trim
9	Оформяне на дясна половина на елемента идентична на лявата му половина	Mirror / Select Line / Select Mirror Line
10	Край на скициране	Finish Sketch
11	3D моделиране	Extrude / Select Profile / Join / Select Distance / Output / Solid
12	Избор на материал	ABS Transparent Clear
13	Проектиране на флорални мотиви в овалната част на елемента	Start 2D sketch / Plane / Spline Control Vertex / Mirror / Select Line / Select Mirror Line / Finish Sketch
14	3D моделиране на флорални мотиви	Extrude / Select Profile / Join / Select Distance / Output / New Solid
15	Заобляне на ръбовете на флоралните мотиви	Fillet / Constant / Edges Selected / Radius / Select Mode - Edge
16	Проектиране на ажурни мотиви в овалната част на елемента	Edit Sketch / Plane / Circle Center point / Mirror / Select Line / Select Mirror Line / Finish Sketch
17	3D моделиране на ажурни мотиви	Extrude / Select Profile / Cut / Select Distance – To next / Output /New Solid
18	Заобляне на ръбовете на ажурните мотиви	Fillet / Constant / Edjes Selected / Radius / Select mode - Edge
19	Поставяне на работни точки за сглобяване	Edit sketch / Visibility / Work Point

1	2	3
20	Проектиране на втори Part - Create 2D and	Идентични обобщени базови стъпки на
	3D objects /средна редица от шест	тези за горната част
	идентични елемента на полата/	
21	Проектиране на трети Part - Create 2D and	Идентични обобщени базови стъпки на
	3D objects /горна редица от седем	тези за горната част
	идентични елемента на полата/	
22	Проектиране на четвърти Part – колан -	New / Metric / Standard (mm).ipt
	Create 2D and 3D objects	
23	Избор на работна равнина	Start 2D sketch / yz Plane
24	Скициране на формата на колана	Line/center / Constrain – Horizontal,
0.5		Coincident / Dimention
25	ЗО моделиране	Extrude / Select Profile / Join / Select
		Distance / Output / Solid
26	Изоор на материал	ABS
07		Fillet (Operations (Februar Operations)
27	Заооляне на ръоовете	Fillet / Constant / Edges Selected / Radius
20		/ Select Mode - Edge
28	Поставяне на расотни точки за сплоояване	Edit Sketch / Visibility / Work Point
29	CITIOOABAHE Ha ETIEMEHTATE / Assembly –	New/ Methc/ Standard (mm).iam
20		Diago / DD K int 1
21		Place / PP-N.Ipt - 1
51	позициониране към колана на долна	Constraint / Assembly / Type Mate /
	редица от седем идентични елемента на	Selection – 1, 2 / Apply
32		Place / PP-2 int = 6 / Constrain / Place
52	релица от шест илентични елемента на	Constraint / Assembly / Type – Mate /
	попата	Selection – 1 2 / Apply
33	Позициониране към копана на горна	Place / PP-3 int – 7/ Constrain / Place
	редица от седем идентични елемента на	Constraint / Assembly / Type – Mate /
	полата	Selection – 1, 2 / Apply
34	Стилистично оформяне	View / Visual Style / Shaded with Edges
		Tools / Application Option / Colors

4. 3D принтиране. За производство на проектираните модели може да се използва материалът 3D Printer Filament Nylon Pla Abs, който често се прилага в тази сфера. За 3D принтирани облекла в практиката се използва дори пластмаса, която не е подходяща за ежедневния стил и тези облекла, макар и атрактивни все още са запазени само за подиума. Причината е, че не са достатъчно практични, поради своята ниска устойчивост и гъвкавост. Въпреки, че принтерите могат да изработват облекло и в домашни условия, процесът е сложен и дълъг, като отнема около 500 часа. Това е времето, нужно да се проектира дизайна, да се принтира и да се полира готовото изделие. Гъвкавите облекла отнемат в пъти повече ресурси и време [15]. Въпреки това 3D принтерите играят все по-голяма роля в модата поради факта, че могат да се използват за изготвяне на орнаменти и аксесоари към облеклото и да принтират директно върху тюл, коприна или шифон, създавайки форми и обеми, които не могат да се постигнат с обикновени платове. 3D технологиите се усъвършенстват с всеки изминал ден и може много скоро принтерите да създават красиви, удобни и комфортни облекла.

Заключение

Разработени са авторски комбинирани модели авангардно облекло на основата на подобие с природни био- и зооформи. Изделията се състоят от вътрешен слой от еластичен

текстилен материал, който се облича под тримерно принтиран външен слой за поясната част на облеклото. Двумерната конструкция е разработена автоматизирано по равнинен метод за проектиране. Тримерният външен слой на облеклото е проектиран с програма с общо предназначение за 3D дизайн на промишлени изделия. За производството на моделите се прилага метод с наслояване на материал на 3D принтер.

Литература

- 1. Атанасова, Р., П. Димитрова, Мода и дизайн на облеклото, изд. ТУ- София, 2017.
- 2. Атанасова, Р., М. Стойнова, Приложение на 3D печатането в модната индустрия, Общотекстилна конференция, сп. Текстил и облекло, бр.2, ISBN: 978-954-91951-2-5, 2017, стр. 45-48.
- 3. Павлова М., Особености при моделиране на дамски раменни изделия върху конструктивна основа с отчитане на налягането върху тялото, сп. Текстил и облекло, бр. 12, ISSN 1310-912X, 2009;стр. 2-9.
- 4. Петров Хр., М. Павлова, Конструиране на дамско горно облекло от еластомерен трикотажен плат, Общотекстилна конференция, сп. Текстил и облекло, бр.4, ISSN 1310-912X, 2008, стр 20-23.
- 5. Петров, Хр., Р. Атанасова, Проектиране на дамско облекло от еластични материали, Научна конференция ЕМФ'2005 с международно участие, сборник доклади, том 2, Варна, 23- 24 септември 2005, стр. 153-160.
- 6. Петров, Хр., Р. Атанасова, Проектиране на дамско облекло за латиноамерикански танци, Международна научна конференция Унитех'05, сборник доклади, ISBN: 954-683-325-8, Габрово, 24-25. XI.2005, стр. II-233- II237.
- 7. Khun, R., Reinilda de Fatima B. Minuzzi, The 3D Printing's Panorama in Fashion Design, 2015. <u>http://www.modadocumenta.com.br/anais/anais/5-Moda-Documenta-2015/02-Sessao-</u> <u>Tematica-Design-Moda-e-Cultura-Digital/Renato-Kuhn_Moda-Documenta2015_THE-3D-</u> <u>PRINTING_S-PANORAMA-IN-FASHION-DESIGN_BILINGUE.pdf</u>
- 8. Lewandrowski, N., 3D Printing for Fashion: Additive Manufacturing and its Potential to Transform the Ethics and Environmental Impact of the Garment Industry, 2014.
- Pavlova M., ZI. Kazlacheva, Methodology for Bi Dimensional Constructing of Elastic Garments, Fashion design and product development, Buletinul institutului politehnic din IAŞI, Romania, Vol. I, Tomul LIII(LVII), FASC. 5, pp 700÷705, IAŞI, Romania 2007;
- 10. AccuMark Professional Edition. What is new for AccuMark V10.0, Gerber Technology Inc., a Business Unit of Gerber Scientific International, 2015.
- 11. Inventor 2012. User Manual. Autodesk, 2015.
- 12. https://www.designersnexus.com
- 13. <u>https://www.irisvanherpen.com</u>
- 14. https://www.monitor.bg/bg/a/view/jivko-sedlarski-ricarjat-na-stomanenite-dami-166569
- 15. https://fashioninside.bg/fashion/zavryshatne-v-bydeshteto-s-3d-printirani-drehi

доц. д-р Магдалена Цветанова Павлова, ТУ – София, тел. 965 36 47, e-mail: <u>mpavlova@tu-sofia.bg</u> доц. д-р Радка Петрова Атанасова, ТУ – София, тел. 965 36 47, e-mail: ratanasova@tu-sofia.bg