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Abstract. This paper present direct numerical simulation (DNS) of the generic PWR core and its thermal-hydraulic 
characteristics. For this simulations SIMPLE method is used and applied in MATLAB environment. The model will be 
used in subsequent simplified simulator development. 

INTRODUCTION 

It is known that there are a number of computer codes which are carrying out calculations of thermal-hydraulic 
processes occurring in nuclear reactors. One of these codes is RELAP5 which is developed for best estimate 
simulation of light water reactor cooling system during postulated accidents [1]. The programs’ main issue is that 

they are with closed source codes and the user can’t make any changes in models and computation procedures. 
Therefore, sometimes it is useful to develop your own code. 

That report considers the development of such code in MATLAB environment. It presents one dimensional flow 
of water coolant at generic PWR’s core. As a basis for creating the model Navier-Stokes differential equation 
system is used, namely – conservation of mass equation, momentum and energy conservation equations with two 
additional thermodynamic algebraic equations. Following the approach which is used in RELAP5 [1] some terms 
are neglected: in equation of momentum – Reynolds term and in equation of energy – diffusion term.  
 

PWR CORE SHORT DESCRIPTION 

There are two major systems utilized to convert the heat generated in the nuclear fuel into electrical power for 
industrial and commercial use. The primary system which is frequently referred to Reactor Coolant System transfers 
the heat generated in the fuel pellets to the steam generator (SG), which is the link between primary and secondary 
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systems. The steam produced in the SG is transferred by the secondary system to the main turbine generator, where 
it is converted into electricity.  

The primary system consists of several main components, namely the reactor vessel, the steam generators, the 
reactor coolant pumps, a pressurizer, and the connecting piping. 

The reactor core, and all associated support and alignment devices, are housed within the reactor vessel. The 
major components are the reactor vessel, the core barrel, the reactor core itself, and the upper internals package [2].  
The primary coolant is maintained at a pressure of ~ 15.5 MPa, enters the core at about 288 °C and leaves it at about 
324 °C depending upon the core configuration [3]. 
 

 
 

FIGURE 1. Schematic picture of nuclear power plant with pressurizer water reactor [4] 
 

ASSUMPTIONS AND POSSIBILITIESFOR PWR CORE MODELING   

Thermal-hydraulic performance in any reactor core is an essential factor in the nuclear power plant design [5]. 
Hence, for a thermal-hydraulic core modeling, analysis, and simulations as a part of the main equipment of the 
nuclear power plant it is necessary to reproduce its inlet and outlet parameters in a proper way. 
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There are several possibilities for the thermal-hydraulic modeling and analyzes of PWR core. Mainly this is done 
by using sub-channel analysis codes. In this codes the system pressure, coolant inlet temperature, as well as coolant 
flow rate and thermal power and its distributions are considered as the key parameters for sub-channel analysis. Also 
in these codes, the governing equations of mass, momentum and energy are solved in control volumes which are 
connected in both radial and axial directions. The flow distributions in the rod bundle geometry are estimated by 
considering lateral momentum balance and the inter channel mixing models to account for the cross flow between 
the adjacent sub-channels. [6] 

In this paper, we describe one-dimensional (1D) thermal-hydraulic model of reactor core and it parameters based 
on SIMPLE method and implemented in MATLAB environment which is described below.  
 

MATHEMATICAL MODEL  

The system that governs the process is 
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The second state equation from (4) can be used to rewrite the energy equation (3) with respect to the temperature

T . 
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 where vc  is the thermal conductivity at constant volume. 
 The system of equations should be solved with predefined initial and boundary conditions corresponding to the 
problem that is considered. 

 
FIGURE 2. Model representation of the 

PWR core 

   
      
      Here we consider thermal-hydraulic processes in the PWR core. The 
problem is considered in 1D and the reactor core is presented as a vertical 
tube with height L  and on the walls of the duct heat source Q  is given with 
a temperature QT . The coolant is light pressurized water with inlet 
temperature bT  and going into the reactor core with inlet velocity bu , 
pressure bp  and density b� . Heated water leaves the core at the top outlet 

with a lack of heat flux, 0
L

T

n

�
�

�
. Beside the boundary conditions some 

initial conditions have to be given depending on the stage of the process at 
the beginning of simulation. Usually, the initial conditions of the parameters 
of the problem are taken corresponding to their inlet values. 
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NUMERICAL PROCEDURES 

The system of equations (1), (2) and (5) is nonlinear. So, it has to be solved numerically. For this purpose, the 
finite volume method [7] is used. The domain under consideration which is the tube that represent of the PWR’s 

core is divided into N  finite volumes, presented, for convenience horizontally on Fig.3. 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 3. A given control volume with its neighbor volumes 
 
Let’s P  is a middle point in one such control volume. The point in the neighbor volumes are denoted with W

and E , correspondingly. The faces surrounding the point P  are denoted with w  and e  correspondingly. It is co 
called staggered grid where scalars like , ,T p �  are presented in the middle point P  of the volume and the vector n  
on the faces. 

The solving process of the equations (1), (2), and (5) is split into two parts. First part concerns equation (5) with 
respect to the temperature T  solved at one time step with predefined velocities u , pressure p , and density � . 
Then at the second part at the same time step are solved the equations (1) and (2) with respect to , ,u p � . These 
equations are two and unknown values are three. So, a form of the equation of state (4) should be used. It should 
connect the temperature of equation (5) with the rest of unknown values. As there is non-theoretical form of first 
equation of (5) except for case of ideal gas this requires an empirical formula � �T� �� to be derived. In this study 
several empirical models have been tested. The simplest one – linear model have been found in the form  

 
1385.8 2.2* (6)T�� �    

 
The data for this model have been taken from [8] for pressure 15.5P MPa� . Fig. 4 shows the agreement 

between data and the model. 
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FIGURE 4. Empirical model for the density as a function of temperature 

 
 
 After obtaining the temperature distribution in one time step then transfer to momentum and continuity equations 
with density distribution following equation (6) again for the same time step. And following these procedures the 
algorithm proceeds in time. 
 Here, in the study we applied a slightly different procedure. In [9] the energy equation (5) is solved with 
reasonably predefined velocity, pressure, and density distribution again using the finite volume method. The solution 
of the energy equation – the temperature distribution was waited for until it reached its steady-state.  
 Here, this temperature distribution was taken as an input value to solve steady-state for equations (1) and (2) 
with respect to velocities and pressure, again using (6) for densities.  
 Applying the finite volume method, the momentum equation is integrated over a control volume 
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 Here, with eF  and wF  the flow fluxes through volume faces � �e
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u�  are denoted. And using upwind 

scheme following Fig. 3 
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Equations (7) and (8) leads to  
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Integrating the right hand side of equation (2) gives 
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Equations (9) and (10) give the equation 1 1 12 2 2
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This equation can be presented in the form  
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where nbu  present the velocities in the neighbor points of ( )i . 
We use the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm to solve this equation. It 

is an iterative method [7]. 
Let’s assume that we know the velocities in an approximation, firstly initial velocities. That means that the 

coefficients in equation (11) can be computed and the pressures can be taken as known, as well. Then we are able to 
solve equation (11) for a provisional velocities *u . 
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And here we make the main approximation of SIMPLE procedure – neglect the term '

nb nba u
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direct relation between velocity and pressure corrections ' ' '
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Now from the integration of continuity equation over the control volume we have � � � � 0
e w

u u� �� �  or 
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which is an equation for pressure corrections. 
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We can write this equation for any internal point of discretization shown on Fig. 3. For boundary points, the 

boundary conditions are 10
u u�   and   0

L

u

n

�
�

�
. 

Solving equation (15) for pressure corrections and using equation (14) for velocity corrections we have * 'u u u� �

and * 'p p p� �  i.e. we have a new approximations for velocity and pressure. Then follows repetition of the 

procedure – solve equation (12) for *u and then equation (15) for 'p . Thus it proceeds until 'u  and 'p  are kept in a 
tolerance.  

Fig. 5 presents the successive iteration of the velocities to the target distribution given whit (*)  while Fig. 6 
presents iteration of the flow rate ( )u�  to its constant value, depending on the boundary velocity 1u . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5.  Successive iterations of velocities converging to a target values in (*) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 6. Flow rate converging to a constant 
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CONCLUSIONS AND OUTLOOK 

 
The method presented above was implemented in MATLAB software. The results show that SIMPLE algorithm 

works for continuity and momentum equations. It allows combining energy equation solution with the continuity 
and momentum equation solutions’ for each time step. It gives the possibility to integrate the computations of 
processes that take place in the steam generator presented in [10]and the current study. These two models we be 
connected in a simplified simulator of primary circuit of PWR.  
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