Choice of optimal replacement of equipment in the warehouse of the company

Silvia Baeva and Kiril Tomov

Citation: **1789**, 020022 (2016); doi: 10.1063/1.4968443 View online: http://dx.doi.org/10.1063/1.4968443 View Table of Contents: http://aip.scitation.org/toc/apc/1789/1 Published by the American Institute of Physics

Choice of optimal replacement of equipment in the warehouse of the company

Silvia Baeva¹ and Kiril Tomov²

¹Technical University – Sofia, FAMI, e-mail: <u>sbaeva@tu-sofia.bg</u> ² Technical University – Sofia, FAMI, e-mail: <u>tomov_kiril@abv.bg</u>

Abstract. The aim of this paper is to find an optimal replacement of equipment in the warehouse of the company. Real data for the machines are used and are processed with appropriate software. The mathematical model is made for this problem as problem for the shortest path from graph theory. The solution is made by Bellman's principle.

INTRODUCTION

Many technical, research and managerial tasks can be formulated and solved as tasks for analysis and optimization of networks. These include for example the design of highways of the oil and gas pipelines in such a way that the cost of construction of the object to be minimal, the creation of electrical equipment and installations with a minimum length of cable connections, or determining the shortest path between two villages at a set road network. Widespread use first in electrical engineering and construction, network methods and models play an important role in the planning of production, processing and transportation processes. They are a handy tool for analysis and synthesis of structures - technical, manufacturing, information, social and others.[1] \div [7]

The aim of this paper is to find an optimal replacement of equipment in the warehouse of the company. Real data for the machines are used and are processed with appropriate software. The mathematical model is made for this problem as problem for the shortest path from graph theory. The solution is made by Bellman's principle and software lingo.

DESCRIPTION OF THE PROBLEM

In the warehouse purchased new machines for the production. In the company will be introduced new production system after N years and these machines will no longer be needed. Nevertheless, the expenses of operation and maintenance increase over time - due to amortization. It may be more profitable a machine to be replaced with a new first or second or etc. $(N-1)^{th}$ years. Persons expert mechanical engineers have identified net expenses, related to the purchase of a new machine in particular i^{th} year, i=1,2,...,N-1 and replacement through j^{th} year, j=2,3,...,N. Let purchased machines are n number for each of these experts has identified net expenses in the tables:

Applications of Mathematics in Engineering and Economics (AMEE'16) AIP Conf. Proc. 1789, 020022-1–020022-10; doi: 10.1063/1.4968443 Published by AIP Publishing, 978-0-7354-1453-2/\$30.00

TABLE 1	. Net ex	penses for	r each	machine,	k=1	1,2,,n
---------	----------	------------	--------	----------	-----	--------

i\j	2	3	 Ν
1	d_{kl2}	d_{k13}	 d_{kIN}
2	1	d_{k23}	 d_{k2N}
	••••	•••	
N-1	1	I	 d_{kN-IN}

The aim of the problem is to determine when each of the machines to be replaced with a new one, so that the total expenses of the first to the N^{th} year for maintenance to be minimal. So the problem can be described through a network of graph theory. Each year compares corresponding vertex and arc length d_{kij} comparing the costs of the machine, k=1,2,...,n, i=1,2,...,N-1, j=2,3...,N. It is necessary to determine the shortest path from I to N for each of the machines.

FIGURE 1. The graph describe the expenses yearly for machine k, k=1,2,...,n

The principle of Bellman is attached to each machine to find optimal and replacement as criteria is used minimal expenses from the first to the N^{th} year for the maintenance. [8]÷[10]

The principle of Bellman states: each stage is optimal - at every stage of solving the problem of the shortest path leading to optimality. [8]+[10]

A function of Bellman is introduced with recurrent formula:

$$f_{kj} = \min\{d_{kj} + f_{ki}\}, i < j, (i, j) \in D, k = 1 \div n$$
(1)

For each machine $f_{kN} = f_{k\min}$, $k = 1 \div n$, $f_{k\min}$ the minimum net expenses. [8]÷[10] For each machine shortest route is: [8]÷[10]

FIGURE 2. The years of replacement - $i_{k1}, i_{k2}, ..., k = 1 \div n$

FOR EXAMPLE

Many technical, research and managerial tasks can be formulated and solved as tasks for analysis and The mathematical model is applied in the warehouse of the company for processing of secondary raw materials. The production line consists of the company have 16 machines, for which are given net expenses (bgn) for maintenance from the I^{st} to the 7^{th} year:

Machine 1									
Year of	2	3	4	5	6	7			
replacement									
Year									
of buying									
1	220	440	750	970	1190	3500			
2	-	220	440	750	970	1190			
3	-	-	220	440	750	970			
4	-	-	-	220	440	750			
5	-	-	-	-	220	440			
6	-	-	-	-	-	220			

		Machi	ie 2, Machin	eo		
Year of	2	3	4	5	6	7
replacement						
Year						
of buying						
1	60438	120876	211514	273952	334390	425028
2	-	60438	120876	211514	273952	334390
3	-	-	60438	120876	211514	273952
4	-	-	-	60438	120876	211514
5	-	-	-	-	60438	120876
6	-	-	-	-	-	60438

Machine 2, Machine 8

	Machine 3									
Year of replacement Year of buying	2	3	4	5	6	7				
1	260	520	870	1130	1390	3740				
2	-	260	520	870	1130	1390				
3	-	-	260	520	870	1130				
4	-	-	-	260	520	870				
5	-	-	-	-	260	520				
6	-	-	-	-	-	260				

	Machine 4									
Year of	2	3	4	5	6	7				
replacement										
Year										
of buying										
1	580	1160	2740	3320	3900	5480				
2	-	580	1160	2740	3320	3900				
3	-	-	580	1160	2740	3320				
4	-	-	-	580	1160	2740				
5	-	-	-	-	580	1160				
6	-	-	-	-	-	580				

Machine	5
machine	2

Year of replacement Year of buying	2	3	4	5	6	7
1	2010	4020	6030	8340	10350	12360
2	-	2010	4020	6030	8340	10350
3	-	-	2010	4020	6030	8340
4	-	-	-	2010	4020	6030
5	-	-	-	-	2010	4020
6	-	-	-	-	-	2010

Machine 6, Machine 9

Year of	2	3	4	5	6	7
replacement						
Year						
of buying						
1	875	1750	2625	3800	4675	5550
2	-	875	1750	2625	3800	4675
3	-	-	875	1750	2625	3800
4	-	-	-	875	1750	2625
5	-	-	-	-	875	1750
6	-	-	-	-	-	875

Machine 7, Machine 10, Machine 12

Year of	2	3	4	5	6	7
replacement						
Year						
of buying						
1	590	1180	1770	2360	2950	3540
2	-	590	1180	1770	2360	2950
3	-	-	590	1180	1770	2360
4	-	-	-	590	1180	1770
5	-	-	-	-	590	1180
6	-	-	-	-	-	590

Machine 11								
Year of	2	3	4	5	6	7		
replacement								
Year								
of buying								
1	1200	2400	3600	5100	6300	7500		
2	-	1200	2400	3600	5100	6300		
3	-	-	1200	2400	3600	5100		
4	-	-	-	1200	2400	3600		
5	-	-	-	-	1200	2400		
6	-	-	-	-	-	1200		

		Ma	ichine 13			
Year of	2	3	4	5	6	7
replacement						
Year						
of buying 🔪						
1	3255	6510	9765	14420	17675	20930
2	-	3255	6510	9765	14420	17675
3	-	-	3255	6510	9765	14420
4	-	-	-	3255	6510	9765
5	-	-	-	-	3255	6510
6	-	-	-	-	-	3255

Machine 14, Machine 16

Year of	2	3	4	5	6	7
replacement						
Year						
of buying						
1	250	500	750	1000	1250	1500
2	-	250	500	750	1000	1250
3	-	-	250	500	750	1000
4	-	-	-	250	500	750
5	-	-	-	-	250	500
6	-	-	-	-	-	250

Machine 15						
Year of replacement Year of buying	2	3	4	5	6	7
1	840	1680	2520	3360	4200	5040
2	-	840	1680	2520	3360	4200
3	-	-	840	1680	2520	3360
4	-	-	-	840	1680	2520
5	-	-	-	-	840	1680
6	-	-	-	-	-	840
TABLE 2. Net expenses (bgn) for each machine						

So entered data were processed with software lingo: [1]

Machine 1
🔁 LINGO - [LINGO Model - M1]
🛃 File Edit LINGO Window Help
Model:
V/17/:path;
Arcs(V,V)/1,2 1,3 1,4 1,5 1,6 1,7 2,3 2,4 2,5 2,6 2,7 3,4 3,5 3,6 3,7 4,5 4,6 4,7 5,6 5,7 6,7/:dist;
EndSets Max=path(7)-path(1):
<pre>@For(Arcs(i,j):path(j)<path(i)+dist(i,j));< pre=""></path(i)+dist(i,j));<></pre>
Data:
Enddata
End
Machine 2, Machine 8
Sets:
V/17/:path;
Arcs(v,v)/1,2 1,3 1,4 1,5 1,6 1,7 2,5 2,4 2,5 2,6 2,7 5,4 5,5 5,6 5,7 4,5 4,6 4,7 5,6 5,7 6,7/:0150; Endsets
<pre>Max=path(7)-path(1); @For(hreg(i i))rath(i)<path(i)+dist(i i));<="" pre=""></path(i)+dist(i></pre>
Data:
dist=60438,120876,211514,273952,334390,425028,60438,120876,211514,273952,334390,60438,120876, 211514,273952,60438,120876,211514,60438,120876,60438;
Enddata
End
Machine 3
Model: Sets:
V/17/:path;
Arcs(V,V)/1,2 1,3 1,4 1,5 1,6 1,7 2,3 2,4 2,5 2,6 2,7 3,4 3,5 3,6 3,7 4,5 4,6 4,7 5,6 5,7 6,7/:dist; Endsets
<pre>Max=path(7)-path(1); @From (in a) graph (i) (sorth (i)) disp (in i));</pre>
<pre>@ror(Arcs(1,]):patn(1)<patn(1)+dist(1,]));="" data:<="" pre=""></patn(1)+dist(1,></pre>
dist=260,520,870,1130,1390,3740,260,520,870,1130,1390,260,520,870,1130,260,520,870,260,520,260;
End

RIGHTSLINK()

End

FIGURE 3. Solution of the problem in lingo

Results

Machine	Min expenses	Years of replacement	Machine	Min expenses	Years of replacement
M1	1320	$1 \rightarrow 3 \rightarrow 5 \rightarrow 7$	M9	5250	$1 \rightarrow 4 \rightarrow 7$
M2	362628	1 →3→5 →7	M10	3540	$1 \rightarrow 7$
М3	1560	$1 \rightarrow 3 \rightarrow 5 \rightarrow 7$	M11	7200	$1 \rightarrow 4 \rightarrow 7$
M4	3480	1 →3→5 →7	M12	3540	$1 \rightarrow 7$
M5	12060	$1 \rightarrow 4 \rightarrow 7$	M13	19530	$1 \rightarrow 4 \rightarrow 7$
M6	5250	<i>1</i> → 4 →7	M14	1500	$1 \rightarrow 7$
M7	3540	$1 \rightarrow 7$	M15	5040	$1 \rightarrow 7$
M8	362628	$1 \rightarrow 3 \rightarrow 5 \rightarrow 7$	M16	1500	$1 \rightarrow 7$

TABLE 3. The optimal replacement of equipment

The overall minimum expenses are 799 566 (bgn).

CONCLUSION

The mathematical model can be applied for the replacement of various types of equipment in companies from different sectors of the economy. The problem could be described by a model of linear optimization, but the specific structure makes reasonable use of special networking methods and algorithms to solve - due to the large number of constraints and variables in them.

REFERENCES

- 1. B. Cheshankov, Operation Research, part 1, Sofia, Bulgaria, 2004.
- 2. B. Gartner, J. Matonsek, Understanding and Using Linear Programing, Berlin, Germany, 2006.
- 3. G. Gatev, Operations Research, Sofia, Bulgaria, 2003.
- 4. H. Karloff, Linear Programing, Atlanta, USA, 2008.
- 5. H. A. Taha, Operations Research, An Introduction, New York, London 1982.
- 6. M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann, *Linear Optimization Problem with Inexact Data*, Berlin, Germany, 2006.
- 7. S. I. Gass, Linear Programing. Methods and Applications, New York, USA, 2003.
- 8. http://academy.telerik.com/algoacademy/season-2012-2013/algorythms-and-graphs
- 9. <u>https://en.wikipedia.org/wiki/Graph_theory</u>
- 10. http://e-maxx.ru/algo/ford_bellman