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Abstract. Stochastic programming is an approach for modeling optimization problems that involve uncertainty. Whereas 

deterministic optimization problems are formulated with known parameters, real world problems almost invariably include 

parameters which are unknown at the time a decision should be made. When the parameters are uncertain, but assumed to 

lie in some given set of possible values, one might seek a solution that is feasible for all possible parameter choices and 

optimizes a given objective function. Such an approach is applied to mathematical model of optimization problem for 

storage stocks in commercial warehouses. Here probability distributions (e.g., of demand) could be estimated from data 

that have been collected over time. The aim is to find some policy that is feasible for all (or almost all) the possible 

parameter realizations and optimizes the expectation of some function of the decisions and the random variables. 

INTRODUCTION 

In present-day global economics, logistics plays a key role in facilitating trade. Also, by extension, ensuring the 

success of business operations. Logistics managers have seen increasing challenges to create and keep efficient and 

effective logistics and supply chain methods. 

In [12] is discuss five of the biggest logistics challenges faced on a daily basis. 

 Customer Service: Logistics management is all about providing the right product in the right quantity to the 

right place at the right time. Customers want full transparency into where their delivery is at all times. In this 

day and age, the location of a customer’s shipment is as interconnected as your social network. 

 Transportation Cost Control: One of the highest costs contributing to the ‘cutting transportation cost’ concern 

is fuel prices. Higher fuel prices are likely to increase transportation costs by pushing up fuel surcharges. 

 Planning and Risk Management: In order to stay as efficient and effective as possible, periodic assessments 

and redesigns of each business sector are necessary. These adjustments are put in place in response to changes 

in the market, such as new product launches, global sourcing, credit availability and the protection of 

intellectual property. Managers must identify and quantify these risks in order to control and moderate them. 

 Supplier/Partner Relationships: It is important to create, understand and follow mutually agreed upon 

standards to better understand not only current performance but also opportunities for improvement. Thus, 

having two different methods for measuring and communicating performance and results in time and effort 

wasted. 

 Government and Environmental Regulations: Carriers face significant compliance regulations imposed by 

state and local authorities. As well as state regulations, environmental issues such as the anti-idling and other 

emission reduction regulations brought about by state and local governments have created concern that the 

compliance costs could exceed their benefits. 

In this sense, researches have been carried out and various optimization problems related to the logistics network, 

the vehicles used to transport the goods and products, their storage in warehouses, etc. have been solved. 
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In [6] a multiple period replenishment problem based on (s, S) policy is investigated for a supply chain (SC) 

comprising one retailer and one manufacturer with uncertain demand. Novel mixed-integer linear programming 

(MILP) models are developed for centralized and decentralized decision-making modes using two-stage stochastic 

programming. To compare these decision-making modes, a Monte Carlo simulation is applied to the optimization 

models’ policies. To deal with demand uncertainty, scenarios are generated using Latin Hypercube Sampling method 

and their number is reduced by a scenario reduction technique. In large test problems, where CPLEX solver is not able 

to reach an optimal solution in the centralized model, evolutionary strategies (ES) and imperialist competitive 

algorithm (ICA) are applied to find near optimal solutions. Sensitivity analysis is conducted to show the performance 

of the proposed mathematical models. Moreover, it is demonstrated that both ES and ICA provide acceptable solutions 

compared to the exact solutions of the MILP model. Finally, the main parameters affecting difference between profits 

of centralized and decentralized SCs are investigated using the simulation method. 

The authors at [11] are  resolved the problems of deciding the optimal warehouse location for multiple markets 

and determining warehouse configuration design against stochastic demands. An appropriate inventory policy with 

owned and rented warehouses for deteriorating items is further designed. The proposed  model maximizes the profit 

under rent warehouse incentives decreasing over time and price-sensitive demands. Furthermore, there is proposed a 

solution algorithm to solve the problem effectively. Sensitivity analysis is conducted to examine the effects of the 

parameters for the model of the algorithm. 

In [5] is proposed an extended relocation model for warehouses configuration in a supply chain network, in which 

uncertainty is associated to operational costs, production capacity and demands whereas, existing researches in this 

area are often restricted to deterministic environments. In real cases,  usually is deal with stochastic parameters and 

this point justifies why the relocation model under uncertainty should be evaluated. Albeit the random parameterscan 

be replaced by their expectations for solving the problem, but sometimes, some methodologies such as two-stage 

stochastic programming works more capable. Thus, in this paper, for implementation of two stage stochastic approach, 

the sample average approximation (SAA) technique is integrated with the Bender's decomposition approach to 

improve the proposed model results. Moreover, this approach leads to approximate the fitted objective function of the 

problem comparison with the real stochastic problem especially for numerous scenarios. The proposed approach has 

been evaluated by some hypothetical numerical examples and the results show that the proposed approach can find 

better strategic solution in an uncertain environment comparing to the mean-value procedure (MVP) during the time 

horizon. 

The aim of [4] is to provide a comprehensive review of studies in the fields of SCND and reverse logistics network 

design under uncertainty. The authors are or- ganized in two main parts to investigate the basic features of these 

studies. In the first part, planning decisions, network structure, paradigms and aspects related to SCM are discussed. 

In the second part, existing optimization techniques for dealing with uncertainty such as recourse-based stochastic 

program- ming, risk-averse stochastic programming, robust optimization, and fuzzy mathematical programming are 

explored in terms of mathematical modeling and solution approaches. Finally, the drawbacks and missing aspects of 

the related literature are highlighted and a list of potential issues for future research directions is recommended. 

In [10] a commercial problem of enterprise logistics nature called multi-product warehouse sizing problem is 

formulated and solved. The optimal warehouse inventory level and the order points are determined by minimizing the 

total inventory ordering and holding costs for a specific time period. The problem is formulated as an appropriate 

mathematical model of NLP nature and solved using appropriate numerical optimization techniques (successive 

quadratic programming procedures). The entire mathematical background for formulating the problem and finding the 

optimal solution to it is presented and appropriately addressed. The model is also illustrated with the help of a 

numerical case study where the sensitivity of the model parameters involved is given through appropriate figures. 

The authors in [9] are proposed a stochastic programming model and solution algorithm for solving supply chain 

network design problems of a realistic scale. Existing approaches for these problems are either restricted to 

deterministic environments or can only address a modest number of scenarios for the uncertain problem parameters. 

The solution methodology integrates a  strategy, the Sample Average Approximation scheme, with an accelerated 

Benders decomposition algorithm to quickly compute high quality solutions to large-scale stochastic supply chain 

design problems with a huge (potentially infinite) number of scenarios. A computational study involving two real 

supply chain networks are presented to highlight the significance of the stochastic model as well as the efficiency of 

the proposed solution strategy. 

Various logistics optimization problems and approaches to solving them can also be found in [2], [3], [7], [8] and 

etc. 

Stochastic programming is an approach for modeling optimization problems that involve uncertainty. Whereas 

deterministic optimization problems are formulated with known parameters, real world problems almost invariably 
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include parameters which are unknown at the time a decision should be made. When the parameters are uncertain, but 

assumed to lie in some given set of possible values, one might seek a solution that is feasible for all possible parameter 

choices and optimizes a given objective function. Such an approach is applied to mathematical model of optimization 

problem for storage stocks in commercial warehouses. Following some basic ideas of stochastic optimization as in 

[1], in this paper probability distributions (e.g., of demand) could be estimated from data that have been collected over 

time. The aim is to find some policy that is feasible for all (or almost all) the possible parameter realizations and 

optimizes the expectation of some function of the decisions and the random variables. 

The research carried out is specific, as problems arise from the increasing use of logistics of products and goods 

and their storage. On the other hand, the storage of a product or product is a cost to the warehouse manager. 

The significance of the research done in the article is that the benefit is maximized for warehouse managers who 

need to make a decision (related to the storage of goods and products) in an uncertain environment. Decision makers 

would like to evaluate the risks before deciding to understand the scope of the possible outcomes and the significance 

of the undesirable effects. 

DESCRIPTION OF THE PROBLEM FOR A PRODUCT 

Suppose that a company has to decide an order quantity x of a certain product to satisfy demand d. The cost of 

ordering is c > 0 per unit. If the demand d is bigger than x, then a back order penalty of b ≥ 0 per unit is incurred. The 

cost of this is equal to b(d − x) if d > x, and is zero otherwise. On the other hand if d < x, then a holding cost of h(x − 

d) ≥ 0 is incurred. The total cost is then 

 𝐺(𝑥, 𝑑) = 𝑐𝑥 + 𝑏[𝑑 − 𝑥]+ + ℎ[𝑥 − 𝑑]+, (1) 

where [a]+ denotes the maximum of a and 0. We assume that b > c, i.e., the back order cost is bigger than the ordering 

cost. We will treat x and d as continuous (real valued) variables rather than integers. This will simplify the presentation 

and makes sense in various situations. 

The objective is to minimize the total cost G(x, d). Here x is the decision variable and the demand d is a parameter. 

Therefore, if the demand is known, the corresponding optimization problem can be formulated in the form 

 𝑚𝑖𝑛
𝑥≥0

𝐺(𝑥, 𝑑). (2) 

The nonnegativity constraint x ≥ 0 can be removed if a back order policy is allowed. The objective function G(x, 

d) can be rewritten as 

 𝐺(𝑥, 𝑑) = 𝑚𝑎𝑥{(𝑐 − 𝑏)𝑥 + 𝑏𝑑, (𝑐 + ℎ)𝑥 − ℎ𝑑}, (3) 

which is piecewise linear with a minimum attained at 𝑥̅ = 𝑑. That is, if the demand d is known, then (no surprises) 

the best decision is to order exactly the demand quantity d. 

Consider now the case when the ordering decision should be made before a realization of the demand becomes 

known. One possible way to proceed in such situation is to view the demand D as a random variable (denoted here 

by capital D in order to emphasize that it is now viewed as a random variable and to distinguish it from its particular 

realization d). We assume, further, that the probability distribution of D is known. This makes sense in situations where 

the ordering procedure repeats itself and the distribution of D can be estimated, say, from historical data. 

Let D be a discrete random variable, evenly distributed in the range [0, M], with the distribution law given in Table 

1: 

 

TABLE 1. Law of distribution of the random variable D 

D d1 d2 … dn 

p p1 p2 … pn 
 

 

Then the mathematical expectation of D is: 

 𝔼(𝐷) =  ∑ 𝑑𝑖 . 𝑝𝑖
𝑛
𝑖=1 , (4) 

and the distribution function of D is: 

 𝐺(𝐷) =  

{
 
 

 
 
0,                         0 < 𝑑 <  𝑑1
𝑝1 ,                    𝑑1 ≤ 𝑑 <  𝑑2
𝑝1 + 𝑝2,  𝑑2 ≤ 𝑑 <  𝑑3
………………………………
∑ 𝑝𝑖
𝑛
𝑖=1 = 1,                𝑑 ≥  𝑑𝑛

  (5) 

The aim of this problem is to find such x quantities to minimize the overall cost of storing the product. 
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Then it makes sense to talk about the expected value, denoted 𝔼[G(x, D)], of the total cost and to write the 

corresponding optimization problem 

 𝑚𝑖𝑛
𝑥≥ 0

𝔼[𝐺(𝑥, 𝐷)]. (6) 

The above formulation approaches the problem by optimizing (minimizing) the total cost on average. What would 

be a possible justification of such approach? If the process repeats itself then, by the Law of Large Numbers, for a 

given (fixed) x, the average of the total cost, over many repetitions, will converge with probability one to the 

expectation 𝔼[G(x, D)]. Indeed, in that case a solution of problem (6) will be optimal on average. 

The above problem gives a simple example of a recourse action. At the first stage, before a realization of the 

demand D is known, one has to make a decision about ordering quantity x. At the second stage after demand D 

becomes known, it may happen that d > x. In that case the company can meet demand by taking the recourse action 

of ordering the required quantity d − x at a penalty cost of b > c. 

The next question is how to solve the optimization problem (6). In the present case problem (6) can be solved in a 

closed form. Consider the cumulative distribution function (cdf) F(z) := Prob(D ≤ z) of the random variable D. Note 

that F(z) = 0 for any z < 0. This is because the demand cannot be negative. It is possible to show that 

 𝔼[𝐺(𝑥, 𝐷)] = 𝑏𝔼[𝐷] + (𝑐 − 𝑏)𝑥 + (𝑏 + ℎ)∫ 𝐹(𝑧)𝑑𝑧
𝑥

0
, (7) 

i.e. 

 𝔼[𝐺(𝑥, 𝐷)] =  

{
  
 

  
 
𝑏𝔼[𝐷] + (𝑐 − 𝑏)𝑥,                                                                                                              0 < 𝑥 <  𝑑1

𝑏𝔼[𝐷] + (𝑐 − 𝑏)𝑥 + (𝑏 + ℎ). 𝑝1. ∫ 𝑑𝑧
𝑥

𝑑1
,                                                                       𝑑1 ≤ 𝑥 <  𝑑2

𝑏𝔼[𝐷] + (𝑐 − 𝑏)𝑥 + (𝑏 + ℎ). (𝑝1 ∫ 𝑑𝑧
𝑑2
𝑑1

+ (𝑝1 + 𝑝2) ∫ 𝑑𝑧
𝑥

𝑑2
),                             𝑑2 ≤ 𝑥 < 𝑑3

…………………………………………………………………………………………

𝑏𝔼[𝐷] + (𝑐 − 𝑏)𝑥 + (𝑏 + ℎ). (𝑝1 ∫ 𝑑𝑧
𝑑2
𝑑1

+ (𝑝1 + 𝑝2) ∫ 𝑑𝑧
𝑑3
𝑑2

+⋯+∑ 𝑝𝑖
𝑛
𝑖=1 . ∫ 𝑑𝑧

𝑥

𝑑𝑛
) , 𝑥 ≥  𝑑𝑛

. (8) 

Therefore, by taking the derivative, with respect to x, of the right hand side of (7) and equating it to zero we obtain 

that optimal solutions of problem (6) are defined by the equation (b + h)F(x) + c − b = 0, and hence an optimal solution 

of problem (6) is given by the quantile 

 𝑥̅ = 𝐹−1(𝑘),  (9) 

where k := 
𝑏−𝑐

𝑏+ℎ
. 

 

DESCRIPTION OF THE PROBLEM FOR MANY PRODUCTS 

For a multi-product task, the play is as follows: 

Consider N of products 𝑃1, 𝑃2, … , 𝑃𝑁. For each product 𝑃𝑗 , 𝑗 = 1, … , 𝑁, the set-up described above is valid. 

The aim of the problem is to find the quantities 𝑥𝑗 , 𝑗 = 1, … , 𝑁, of product 𝑃𝑗 , 𝑗 = 1, … , 𝑁, for which 

 𝑚𝑖𝑛
𝑥𝑗≥ 0

∑ 𝔼[𝐺𝑗(𝑥𝑗 , 𝐷𝑗)]
𝑁
𝑗=1 , (10) 

where: 

𝐷𝑗  is discrete random variable, evenly distributed in the range [0, 𝑀𝑗], with the distribution law given in Table 2: 

 

TABLE 2. Law of distribution of the random variable 𝐷𝑗 

𝑫𝒋 dj1 dj2 … djn 

𝒑𝒋 pj1 pj2 … pjn 
 

 

Then the mathematical expectation of 𝐷𝑗  is: 

 𝔼(𝐷𝑗) =  ∑ ∑ 𝑑𝑗𝑖 . 𝑝𝑗𝑖
𝑛
𝑖=1

𝑁
𝑗=1 , (11) 

and the distribution function of 𝐷𝑗  is: 

 𝐺(𝐷𝑗) =  

{
 
 

 
 

0,                         0 < 𝑑𝑗 < 𝑑𝑗1
𝑝𝑗1,                    𝑑𝑗1 ≤ 𝑑𝑗 < 𝑑𝑗2
𝑝𝑗1 + 𝑝𝑗2,  𝑑𝑗2 ≤ 𝑑𝑗 <  𝑑𝑗3
………………………………

∑ ∑ 𝑝𝑗𝑖
𝑛
𝑖=1

𝑁
𝑗=1 = 1,                𝑑𝑗 ≥ 𝑑𝑗𝑛

  (12) 

and 
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 𝔼[𝐺𝑗(𝑥𝑗 , 𝐷𝑗)] = 𝑏𝑗𝔼[𝐷𝑗] + (𝑐𝑗 − 𝑏𝑗)𝑥𝑗 + (𝑏𝑗 + ℎ𝑗) ∫ 𝐹(𝑧)𝑑𝑧
𝑥𝑗
0

, (13) 

i.e. 

  𝔼[𝐺𝑗(𝑥𝑗 , 𝐷𝑗)] =  

{
  
 

  
 

𝑏𝑗𝔼[𝐷𝑗] + (𝑐𝑗 − 𝑏𝑗)𝑥𝑗 ,                                                                                                              0 < 𝑥𝑗 < 𝑑𝑗1

𝑏𝑗𝔼[𝐷𝑗] + (𝑐𝑗 − 𝑏𝑗)𝑥𝑗 + (𝑏𝑗 + ℎ𝑗). 𝑝𝑗1. ∫ 𝑑𝑧
𝑥𝑗

𝑑𝑗1
,                                                                       𝑑𝑗1 ≤ 𝑥𝑗 < 𝑑𝑗2

𝑏𝑗𝔼[𝐷𝑗] + (𝑐𝑗 − 𝑏𝑗)𝑥𝑗 + (𝑏𝑗 + ℎ𝑗). (𝑝𝑗1 ∫ 𝑑𝑧
𝑑𝑗2

𝑑𝑗1
+ (𝑝𝑗1 + 𝑝𝑗2) ∫ 𝑑𝑧

𝑥𝑗

𝑑𝑗2
),                             𝑑𝑗2 ≤ 𝑥𝑗 < 𝑑𝑗3

…………………………………………………………………………………………

𝑏𝑗𝔼[𝐷𝑗] + (𝑐𝑗 − 𝑏𝑗)𝑥𝑗 + (𝑏𝑗 + ℎ𝑗). (𝑝𝑗1 ∫ 𝑑𝑧
𝑑𝑗2

𝑑𝑗1
+ (𝑝𝑗1 + 𝑝𝑗2) ∫ 𝑑𝑧

𝑑𝑗3

𝑑𝑗2
+⋯+∑ 𝑝𝑗𝑖

𝑛
𝑖=1 . ∫ 𝑑𝑧

𝑥𝑗

𝑑𝑗𝑛
) , 𝑥𝑗 ≥  𝑑𝑗𝑛

. (14) 

 

The aim of this problem is to find such 𝑥𝑗 , 𝑗 = 1. . 𝑁, quantities to minimize the overall cost of storing the 

products. 

The objective is to minimize the total cost ∑ 𝔼[𝐺𝑗(𝑥𝑗 , 𝐷𝑗)]
𝑁
𝑗=1 . Here 𝑥𝑗 , 𝑗 = 1. . 𝑁, is the decision variable and the 

demand 𝑑𝑗 , 𝑗 = 1. . 𝑁, is a parameter. Therefore, if the demand is known, the corresponding optimization problem can 

be formulated in the form 

  𝑚𝑖𝑛
𝑥≥0

∑ 𝔼[𝐺𝑗(𝑥𝑗 , 𝐷𝑗)]
𝑁
𝑗=1 .  (15) 

 

SOLUTION 

The problems described above are solved by stochastic programming methods, with the average quantities of 

products and the expected storage quantities being represented by a mathematical expectation of a uniformly 

distributed random quantity, in two cases - continuous and discreet. 

 

NUMERICAL REALIZATION 

The models described above are applied to three product storage problem. 

Short-shelf products are selected: cheese, donkey milk, butter. 

For each product are known a unit price (c), a unit price for an additional order (b) and a unit storage price (h) 

(table 3). 

 

TABLE 3. The unit prices of products 

 c (BGN) b (BGN) h (BGN) 

cheese 7.5 10 5 

donkey milk 250 500 200 

butter 5 7.5 3 
 

 

 

First product: Cheese 

 

Continuous case is shown in figure 1: 𝑥𝜖[0; 500] 
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FIGURE 1 Continuous case, where the axis 𝑥 is demanded quantity (kg), the axis y is storage costs of first product (BGN) 
 

 

Discrete case in two, three, four and five points: 

 

TABLE 4. Law of distribution of the random variable 𝐷1 in two, three, four and five points 

𝑫𝟏 100 400 

𝒑𝟏 𝟏

𝟐
 

𝟏

𝟐
 

𝑫𝟏 100 250 400 

𝒑𝟏 𝟐

𝟓
 

𝟏

𝟓
 

𝟐

𝟓
 

𝑫𝟏 50 200 350 500 

𝒑𝟏 𝟏

𝟓
 

𝟐

𝟓
 

𝟏

𝟓
 

𝟏

𝟓
 

𝑫𝟏 50 150 250 350 450 

𝒑𝟏 𝟏𝟎

𝟓𝟎
 

𝟓

𝟓𝟎
 

𝟐𝟎

𝟓𝟎
 

𝟓

𝟓𝟎
 

𝟏𝟎

𝟓𝟎
 

 

 

Continuous and discrete case is shown in figure 2: 
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(2a)       (2b) 

 

 
(2c)       (2d) 

FIGURE 2 Continuous and discreet case of two (2a), three (2b), four (2c) and three (2d) points, where the axis 𝑥 is demanded 

quantity (kg), the axis y is storage costs of first product (BGN) 
 

 

Second product: Donkey milk 

 

Continuous case is shown in figure 3: 𝑥𝜖[0; 150] 
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FIGURE 3 Continuous case, where the axis 𝑥 is demanded quantity (kg), the axis y is storage costs of second product (BGN) 
 

 

Discrete case in two, three, four and five points: 

 

TABLE 5. Law of distribution of the random variable 𝐷2 in two, three, four and five points 

𝑫𝟐 25 125 

𝒑𝟐 𝟏

𝟐
 

𝟏

𝟐
 

𝑫𝟐 25 75 125 

𝒑𝟐 𝟏𝟕

𝟓𝟎
 

𝟏𝟔

𝟓𝟎
 

𝟏𝟕

𝟓𝟎
 

𝑫𝟐 20 60 100 140 

𝒑𝟐 𝟏𝟏

𝟒𝟎
 

𝟗

𝟒𝟎
 

𝟏𝟑

𝟒𝟎
 

𝟕

𝟒𝟎
 

𝑫𝟐 20 50 80 110 140 

𝒑𝟐 𝟖

𝟑𝟎
 

𝟒

𝟑𝟎
 

𝟖

𝟑𝟎
 

𝟒

𝟑𝟎
 

𝟔

𝟑𝟎
 

 

 

Continuous and discrete case is shown in figure 4: 
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(4a)       (4b) 

 

 
(4c)       (4d) 

FIGURE 4 Continuous and discreet case of two (4a), three (4b), four (4c) and three (4d) points, where the axis 𝑥 is demanded 

quantity (kg), the axis y is storage costs of second product (BGN) 
 

 

Third product: Butter 

 

Continuous case is shown in figure 5: 𝑥𝜖[0; 200] 
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FIGURE 5 Continuous case, where the axis 𝑥 is demanded quantity (kg), the axis y is storage costs of third product (BGN) 
 

 

Discrete case in two, three, four and five points: 

 

TABLE 6. Law of distribution of the random variable 𝐷3 in two, three, four and five points 

𝑫𝟑 50 150 

𝒑𝟑 𝟏

𝟐
 

𝟏

𝟐
 

𝑫𝟑 40 100 160 

𝒑𝟑 𝟐𝟒

𝟔𝟎
 

𝟏𝟏

𝟔𝟎
 

𝟐𝟓

𝟔𝟎
 

𝑫𝟑 30 80 130 180 

𝒑𝟑 𝟏𝟓

𝟓𝟎
 

𝟏𝟎

𝟓𝟎
 

𝟏𝟒

𝟓𝟎
 

𝟏𝟏

𝟓𝟎
 

𝑫𝟑 20 60 100 140 180 

𝒑𝟑 𝟖

𝟒𝟎
 

𝟖

𝟒𝟎
 

𝟕

𝟒𝟎
 

𝟏𝟎

𝟒𝟎
 

𝟕

𝟒𝟎
 

 

 

Continuous and discrete case is shown in figure 6: 
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(6a)       (6b) 

 

 

 
(6c)       (6d) 

 

FIGURE 6 Continuous and discreet case of two (6a), three (6b), four (6c) and three (6d) points, where the axis 𝑥 is demanded 

quantity (kg), the axis y is storage costs of third product (BGN) 
 

 

The numerical realization is implemented in Python, Maple, MatLab software environments. 
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Numerical results 

The numerical realization' results of the problem are presented in a table 7. 

 

TABLE 7. Numerical results 

Cost (BGN) in 

case 

Product 

Continuous 

case 

Discreet 

case with 

two points 

Discreet 

case with 

tree points 

Discreet 

case with 

four points 

Discreet 

case with 

five points 

Cheese 𝔼(𝟖𝟑,𝑫𝟏  ) = 

2 396.835 

𝔼(𝟏𝟎𝟎,𝑫𝟏  ) = 

2 250 

𝔼(𝟏𝟎𝟎,𝑫𝟏  ) = 

2 250 

𝔼(𝟏𝟎𝟎,𝑫𝟏  ) = 

2 400 

𝔼(𝟏𝟎𝟎,𝑫𝟏  ) = 

2 400 

Donkey milk 𝔼(𝟓𝟒,𝑫𝟐  ) = 

30 804 

𝔼(𝟐𝟓,𝑫𝟐  ) = 

31 250 

𝔼(𝟓𝟖,𝑫𝟐  ) = 

30 854 

𝔼(𝟒𝟗,𝑫𝟐  ) = 

30 832.5 

𝔼(𝟔𝟎,𝑫𝟐  ) = 

30 900 

Butter 𝔼(𝟒𝟖,𝑫𝟑  ) = 

690.48 

𝔼(𝟓𝟎,𝑫𝟑  ) = 

625 

𝔼(𝟖𝟎,𝑫𝟑  ) = 

718 

𝔼(𝟔𝟎,𝑫𝟑  ) = 

694 

𝔼(𝟒𝟎,𝑫𝟑  ) = 

692 

∑𝔼(𝒙𝒋, 𝑫𝒋  ) =

𝟑

𝒋=𝟏

 

 

33 891.315 

 

34 125 

 

33 822 

 

33 927 

 

33 992 

 

Discussion of results 

In the continuous case, the best solution is obtained, but it is practically inapplicable and requires discretion. A 

sampling of each of the three products is made at two, tree, four and five points. From the above graphs (figures 2, 4, 

6) it is seen that with the increase of the number of discrete points the deviation decreases. 

In conclusion, it can be said that increasing the number of discrete points results in a better approximation, which 

leads to an increase in the accuracy of the desired end results, but the discrete points in a closed interval must be the 

final count. 

CONCLUSION AND FUTURE WORKS 

The stochastic approach used to solve the problem of stockpiling can be applied in other cases. For example, 

building an investment portfolio for maximum return. Here probability distributions of the returns on the financial 

instruments being considered are assumed to be known, but in the absence of data from future periods, these 

distributions will have to be elicited from some accompanying model, which in its simplest form might derive solely 

from the prior beliefs of the decision maker. Another complication in this setting is the choice of objective function: 

maximizing expected return becomes less justifiable when the decision is to be made once only, and the decision-

maker’s attitude to risk then becomes important. 

Future research will be focus on appling and studing stochastic programming' models two-stage (linear) problems. 

The interest stems from the fact that the decision maker is often required takes some action in the first stage, after 

which a random event occurs affecting the outcome of the first-stage decision and in the second stage that compensates 

for any bad effects that might have been experienced as a result of the first-stage decision. 
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