
Robot Modeling, Motion Simulation and Off-line
Programming Based on SolidWorks API

Nikolay Bratovanov
Robotics Lab, Faculty of Automation

Technical University of Sofia
Sofia, Bulgaria

nbratovanov@tu-sofia.bg

Abstract—The paper contributes to the development of a general-
purpose modeling, motion simulation and off-line programming
system applicable to various manipulators and mechanisms. It is
based on the popular CAD software SolidWorks, widely used in
many industries, and its application programming interface (API).
Implemented as a SolidWorks macro (written in VBA), the system
allows the direct usage of the existing robot 3D models created for
manufacturing purposes and eliminates the need for additional
motion simulation software, thus providing an integrated solution
for the simultaneous execution of design and simulation tasks. The
lightweight integration into SolidWorks and the effective interface
to controllers or standalone simulators that generate the motion of
the manipulators distinguish the proposed development from the
currently available CAD-based robot motion simulators.

Keywords-modeling; motion simulation; off-line programming;
robotic systems; mechanisms; application programming interface;
layout analysis; SolidWorks; Visual Basic for Applications;

I. INTRODUCTION

The benefits of robotics simulation software systems have
been recognized by scientists and engineers, with applications
ranging from simple robot path simulation to complete robotic
cell layout analysis [1]. Various simulation tools that accurately
represent the proposed robot and cell geometry, and the robot
kinematic and dynamic performance are valuable instruments
for optimizing design, verifying feasibility, designing workcell
layout, verifying robot motion programs, and evaluating cell
performance [2]. These useful features turn robotics simulation
software systems into an essential element of modern and agile
manufacturing plants, as they make possible to visualize and test
the robotic system, even if it does not exist physically. Such an
off-line programming approach based on 3D models drastically
reduces programming and set-up time and allows the cell to keep
production while the programmers realize new robot programs
in an office environment [3], [4].

However, as noted in [5], off-line programming is not yet
commonly and widely used in applications, as commercial off-
line programming systems are very expensive, with prices even
much higher than the robotic systems themselves. Furthermore,
most of the available CAD-based developments are oriented
towards (and limited to) universal serial six degrees of freedom
(DOF) robots used for the automation of widespread industrial

applications such as welding, spraying, machine tending, and
assembly [6], [7], [8], [9]. Meanwhile, the alternative type of
simulation software – the specialized 3D simulators – suffer
from drawbacks associated with the lack of integrated modeling,
design and evaluation tools, limited industrial applicability, and
high licensing prices. In addition, these systems fail in providing
an integrated solution that would allow engineers to perform
design and simulation tasks simultaneously, without the need of
using several different software products.

All these essential limitations raise questions concerning the
effectiveness, availability and applicability of present-day robot
modeling, motion simulation and off-line programming systems.
A previous paper of the same author [10] proposes a solution to
these issues by creating a SolidWorks-based simulation system.
This paper is an extension of the previous work focusing on the
implementation of a more efficient motion simulation approach,
optimized kinematic modeling procedures, improved off-line
programming functionality, simulation of multi-robot systems,
and others. Despite being capable of providing motion planning
on its own, the proposed tool relies on a more efficient external
motion generation approach, directly interfacing to controllers
or standalone simulators, thus contributing to the versatile and
lightweight nature of the simulation system. In addition, it can
be implemented in each SolidWorks license without adding cost
and affecting SolidWorks performance (in contrast to the bulky
architecture of most CAD-based simulators). Being integrated
into SolidWorks, engineers have the capability to interactively
design and verify their work via motion simulation within one
and the same environment – a task especially effective when
designing robots, which operate in tight mechanical constraints
imposed by the tools and equipment. The developed modeling,
motion simulation and off-line programming system has found
a broad industrial application in semiconductor and flat panel
industries.

II. SYSTEM ARCHITECTURE

The proposed implementation is based on the SolidWorks
application programming interface (API) that provides complete
freedom and flexibility in the process of developing custom tools
and applications. Such an application composed as a VBA-based
SolidWorks macro defines the basics of the proposed simulation
software and shapes its specific system architecture.

A. SolidWorks API

The SolidWorks application programming interface (API)
is a powerful tool, which incorporates hundreds of SolidWorks
interfaces comprised of various methods and properties that can
be addressed via VBA, VB.NET, C# or C++ programs. Based
on the native SolidWorks object model (Fig. 1), the SolidWorks
API provides direct access to the inherent 3D CAD software’s
functionality. This useful feature allows users to develop
custom applications and take full advantage of the powerful
SolidWorks capabilities for the execution of unique tasks.

Figure 1. High-level SolidWorks object model hierarchy.

Employing the above concept, the proposed motion simulation
and off-line programming system is explicitly developed as a
SolidWorks API-compliant program written in Visual Basic for
Applications, featuring all the necessary methods and interfaces
required by the specific functionality of the simulation tool.

B. VBA Application (SolidWorks Macro)

The main goal of the VBA application for motion simulation
and off-line programming is to actuate the existing 3D models
developed for design and manufacturing purposes, as specific
motion commands are being executed by the user. In other
words, it must establish a connection between SolidWorks and
the motion control software (MCS) of the manipulator being
simulated. This key functionality is associated with setting up a
motion data transferring procedure between the two platforms
that is based on the following sequence – first, motion data is
derived from a text file (generated by the MCS), containing the
current values of all joints/logical axes of the manipulator being
controlled. This is followed by a processing of the collected
data, which is then sent to the already defined equations of
motion (kinematic model) of the simulated device. Procedures
such as component selections, motion equation calculations,
and matrix transformations then take place, resulting in 3D
model actuation that exactly corresponds to the motion cycle
executed by the user. Other essential SolidWorks macro
functionalities are associated with object-handling simulations,
derivation of robot coordinates, ‘motion-by-drag’ execution,
and implementation of an intuitive, macro-compliant graphical
user interface (GUI). The structure of the developed VBA
application for motion simulation and off-line programming
based on the SolidWorks API is shown in Fig. 2.

Figure 2. Structure of the VBA application based on the SolidWorks API.

III. SOLIDWORKS API-COMPLIANT 3D MODELING

Before moving on to the implementation of the VBA macro
application, an important preliminary step related to analysis and
modification of the existing 3D assemblies has to be performed.
The purpose is to develop new ‘modified’ assemblies that are
compliant with the SolidWorks API methods and interfaces for
component selection, matrix transformation and actuation of the
3D models, and thus are compatible with the overall structure of
the simulation system. The modification procedure consists of
decomposing the existing assemblies created for manufacturing
purposes, and reassigning the coordinate frame of each moving
component (link) of the simulated mechanisms. The educational
serial manipulator Scorbot-ER IX has been used as an example
throughout the following sections.

A. Decomposition of the Existing 3D Assemblies

The goal of the first step of the modification procedure is to
solve issues related to the structure of the existing assemblies
and the mates between individual links. Generally, these issues
are associated with improper mate definitions, invalid structure
of the assemblies, presence of ‘fixed’ components, etc. caused
by inadequate modeling of the simulated mechanisms. It is
important to note that designers cannot be blamed in this regard,
simply because the described issues have little-to-no effect on
manufacturing-related processes such as creation of drawings,
execution of CAM, FEA-based simulations, etc. When it comes
to motion simulation, however, it is critical for the components
of the simulated mechanisms to be designed as individual parts,
which are then used for the creation of new SolidWorks API-
compliant assemblies. The described process requires analyzing
the structure and mechanics of the manipulators that would later
allow the user to modify the existing 3D assemblies (Fig. 3).
Additional requirements are associated with removing all mates
between the individual links, as their functionality is explicitly
implemented in the VBA macro (via the kinematic modeling
procedure). The elimination of internal components is another
recommended modification step that helps improve the overall
performance of the simulation system and deals with
confidentiality issues.

Figure 3. Analysis and decomposition of the Scorbot-ER IX robot assembly.

B. Reassignment of Coordinate Frames

The second modification step has a direct impact on the
performance, functionality and accuracy of the simulation tool.
Its goal is to make sure that the coordinate frame of each link is
properly attached, in accordance with the manipulators’
geometry and the corresponding kinematic modeling defined in
the VBA macro. Just like the previous step, the reassignment of
coordinate frames is always necessary due to the arbitrary frame
attachments inherent to most of the available assemblies created
for design and manufacturing purposes. Indeed, rarely would
someone encounter 3D assemblies in industry where all frames
are attached in a strict fashion, dictated by a specific rule. This
is completely understandable since frame attachment has little
to do with the creation of assembly drawings, exploded views,
mounting instructions, and other similar tasks, typical for
standard, design-oriented, static assemblies. In order to perform
precise motion simulation and off-line programming tasks,
however, a proper convention for link frame attachment must
be adopted by the SolidWorks API-compliant assemblies
(already created in the previous modification step). In the
general case of simulating open-loop serial robots (Fig. 4), the
coordinate frame attachment procedure is based on the common
Denavit-Hartenberg (DH) convention, introduced in 1955 [11].

Figure 4. Scorbot-ER IX frame attachment based on the DH convention.

IV. GEOMETRIC AND KINEMATIC MODELING

In order to actuate the SolidWorks API-compliant models,
an essential geometric and kinematic modeling VBA procedure
must be implemented. Its goal is providing a formal description
of the geometry of the simulated mechanisms, defining their
kinematic equations, performing matrix transformations, and
actuating their links via specific SolidWorks API methods and
interfaces. As already mentioned, the general case of simulating
open-loop serial structures utilizes the efficient DH convention,
which provides complete information in terms of the geometry
of each link, as well as its connections with neighbor links, based
on the definition of four quantities called DH parameters. Two
of these parameters – a (link length) and α (link twist) – describe
the link’s geometry, while the other two – d (link offset) and θ
(joint angle) – describe the link’s connection to neighbor links.
Given the above information, the relationship between the
attached frames of each moving component can be easily
defined using coordinate transformation and matrix calculation
techniques, thus representing the pose of one link with respect to
another as a function of the four parameters of the links, see (1).

 𝑇௜
௜ିଵ = ൦

cos 𝜃௜

sin 𝜃௜

0
0

 − sin 𝜃௜ cos 𝛼௜

 cos 𝜃௜ cos 𝛼௜

 sin 𝛼௜

 0

 sin 𝜃௜ sin 𝛼௜

 − cos 𝜃௜ sin 𝛼௜

 cos 𝛼௜

 0

 𝑎௜ cos 𝜃௜

 𝑎௜ sin 𝜃௜

 𝑑௜

 1

൪ 

Next, the link transformations can be multiplied together to find
the single transformation that relates the frame of the robot’s
last link n (the end-effector) to the frame of the 0 link (the base).
The derived transformation 𝑇௡

଴ will be a function of all the
robot’s joint variables and, as a result, the further development
of the robot’s kinematic equations becomes straightforward.
Adopting the described approach into the geometric and
kinematic modeling VBA procedure requires the definition of
multiple quantities, sub-procedures and functions representing
constant/variable DH parameters, 3x1 position vectors, 3x3
rotation matrices, 4x4 transformation matrices, matrix
transpose, matrix multiplication, etc. Some of the additional
functionalities include selection of components, actuation of 3D
models, and execution of object-handling tasks. It is important
to remark that the SolidWorks API-based simulation system
does not impose any limitations in terms of the utilized methods
for geometric and kinematic modeling – thus, it supports the
simulation of various robots and mechanisms, contributing to
the overall flexibility and versatility of the developed system.
Furthermore, the motion definition approach employed by the
VBA application is based on a distinctive technique where the
mechanisms’ joint variables receive their values from a source,
external to the SolidWorks API-based simulation system (robot
controllers, standalone simulators or any other type of advanced
software). In this manner, a real-time connection between the
external source of motion planning (generally the manipulators’
MCS) and the geometric and kinematic modeling procedure is
established, contributing to the fast and lightweight nature of
the proposed motion simulation system.

V. CONNECTION TO MOTION CONTROL SOFTWARE

The primary goal of establishing a connection between the
MCS of the simulated mechanisms and SolidWorks is the

implementation of a real-time communication between the two
platforms, facilitating a motion data sharing process, essential
for the functionality of the VBA application. The proposed
concept offers a number of advantages, which distinguish the
SolidWorks API-based simulation system from the currently
available robot simulation and off-line programming software.
For example, the structure of the developed system is simplified,
as complex motion planning and control algorithms are not part
of its architecture. On the other hand, the provided MSC-to-
SolidWorks interface greatly expands the versatility and
applicability of the simulation system, turning it into a universal
solution for motion simulation and off-line programming of
virtually any mechanism used in any field.

The implementation of the VBA procedure responsible for
establishing the MCS-to-SolidWorks connection consists of
reading an external text file containing the current values of all
joints/logical axes of the manipulator being controlled. This is
followed by a proper processing of the collected data, which is
then sent to the manipulator’s motion equations, already defined
in the geometric and kinematic modeling procedure. The first
step of the approach is related to analyzing and identifying the
structure of the text file, corresponding to the exact mechanism
being simulated. The purpose is providing the VBA application
with information concerning the number of the available joint
variables/logical axes as well as their specific arrangement.
Once the system is able to identify and extract the particular
value of each variable for a single time slice, a specific loop-
based procedure takes place. Its purpose is to perform a smooth
motion simulation by continuously reading the external motion
data provided by the corresponding text file and transferring it
to the mechanism’s equations of motion. Therefore, a loop that
facilitates the execution of the mentioned text file analysis, as
well as the reading and data transferring tasks in an uninterrupted
fashion, is developed. In this manner, the motion data generated
by the simulated mechanism’s MCS is continuously supplied to
the corresponding kinematic equations, resulting in a smooth
actuation of its 3D model. Some of the additional requirements
associated with the described procedure include setting the
correct loop frequency in accordance with the specific refresh
rate of the motion control software, implementing a start/stop
procedure that launches and terminates the execution of the file
reading loop, and performing a unit conversion or any other type
of motion data processing (if necessary).

VI. ADDITIONAL FUNCTIONALITY AND GUI

The implementation of a VBA procedure responsible for
establishing the MCS-to-SolidWorks connection is the final step
essential for the basic functionality of the developed motion
simulation system. In order to enhance its overall performance
and provide more advanced features associated with off-line
programming and object-handling, however, three additional
procedures are implemented in the VBA-based macro.

A. Motion-by-Drag

The so far described functionality of the SolidWorks API-
based motion simulation system implies that all mates between
the links of the utilized 3D models have to be removed in order
for the system to operate in a proper way. In the standard case
of performing motion simulations based on motion patterns and
programmed cycles already existing in the manipulators’ MCS

(‘Simulator’ mode), this mate elimination has no negative effect
on the application’s functionality, as the simulation process is
straightforward (MCS-to-SolidWorks). In the opposite case of
performing SolidWorks-to-MCS off-line programming tasks,
however, the modified 3D models and the corresponding VBA
procedures turn inefficient. For this reason, the implementation
of the so-called ‘Drag’ mode is considered. Its purpose is to
allow the users to manually move the manipulator inside the
SolidWorks graphics area, and be able to derive the values of
its joint variables for any given configuration. The provided
data can then be properly used inside the MCS, thus facilitating
an efficient off-line programming approach.

The effective implementation of the above procedure relies
mainly on the proper adaptation of the mechanisms’ 3D models
(the same ones utilized for standard motion simulations), which
incorporates the addition of dimension and proximity sensors.
These virtual tools provide useful information related to the
displacement of the manipulators’ joints, as well as their ranges
and direction of motion. Specific VBA procedures comprised
of various references, selections, conditional statements and
calculations related to the supplied sensor information are then
implemented, resulting in the creation of a robot coordinate
derivation functionality. The final step of the ‘motion-by-drag’
development is associated with the definition of all connections
(mates) between the mechanisms’ links, as they are mandatory
for the execution of the manual drag (the defined mates are
disabled as soon as ‘Simulator’ mode is on, and vice versa).

B. Object-Handling

Another additional functionality is associated with the
simulation of realistic object-handling operations, quite popular
among many industrial robots. Its implementation is closely
related to the geometric and kinematic modeling procedure, as
the object-handling simulation concept is based on the same DH
principle. When an object is picked by the manipulator, the
coordinate frames of the handled object and the robot’s end-
effector start moving in an identical manner, as if the two bodies
become a single component. As soon as the object is released,
this relationship is broken, rendering the object stationary in
space, with its frame arbitrarily positioned and orientated with
respect to the robot base. The implementation of the described
approach requires the availability of 3D models, with properly
attached coordinate frames, of the objects being handled.
Another key requirement is related to the introduction of
specific variables in the text file that is generated by the robots’
MCS. Their purpose is to indicate when a particular object is
being picked or released, and by which end-effector (in case
there are more than one). The final step of the implementation
consists of defining the exact logic of the object-handling
algorithm that is applicable to the specific manipulator being
simulated.

C. Graphical User Interface (GUI)

In order to facilitate the overall functionality of the proposed
modeling, motion simulation and off-line programming system,
an intuitive graphical user interface (GUI) serving as an interface
between the user and the procedures implemented in the VBA
application, is developed (Fig. 5). Some of its most important

features are related to switching between ‘Simulation’ or ‘Drag’
modes, obtaining joint coordinates, and executing ‘motion-by-
drag’ along specific robot joint coordinates/logical axes.

Figure 5. A GUI corrseponding to the Scorbot-ER IX SolidWorks macro.

The implementation of the GUI utilizes a number of controls
such as toggle buttons, text boxes and labels, which are directly
connected to the corresponding VBA procedures.

VII. EXAMPLES AND SIMULATIONS

The applicability, versatility and efficiency of the proposed
modeling, motion simulation and off-line programming system
are validated by presenting examples and simulations from three
different fields. The purpose of this section is to demonstrate that
the developed system is relevant not only to universal robots
(such as the Scorbot-ER IX example), but instead, to a wide
range of applications, spanning from industrial manufacturing to
human body mechanics.

A. Semiconductor Industry Automation

The first example of a successful utilization of the developed
simulation system is associated with the field of semiconductor
industry automation and wafer handling robotics. Manufacturing
of semiconductor devices employs a specific type of high-
performance robots, which are responsible for material handling
inside complex processing machines and technology equipment.
The successful implementation of these robotic systems, often
comprised of multiple robots, a number of process stations,
various peripheral equipment and other specialized components,
all located in a highly compact and narrow environment, is often
determined by the efficiency of the available simulation system
and the execution of realistic motion simulations, precise off-
line programming and in-depth customer layout analyses. In this
regard, the proposed simulation system is specially adapted to
the field of semiconductor industry. As a result, SolidWorks
API-compliant 3D assemblies of wafer handling robots, their
corresponding VBA macro files and GUIs are developed. These
key simulation elements are then integrated with 3D models of
the specific technology equipment provided by the customers,
leading to the development of advanced and highly efficient 3D
assemblies representing the whole automated system (Fig. 6).

Figure 6. 3D models of a wafer handling robot and a specific customer tool.

The creation of such integrated assemblies, fully compliant with
the functionality of the SolidWorks API-based simulation
system, allows users to perform a variety of tasks associated
with realistic motion simulations, off-line programming, station
teaching, layout & reachability analysis, throughput estimation,
visual collision detection, etc. Another important feature is the
production of realistic, high-quality animations, which are
useful for the creation of presentation and demo materials. All
of the specified advanced techniques aid in the execution of
various application, design and marketing tasks, saving time,
effort and costs, and thus significantly enhancing productivity.

B. Overconstrained Parallel Mechanisms

The second example is related to the simulation of a special
type of overconstrained parallel mechanisms, which has found
broad industrial application in semiconductor manufacturing.
Adapting the SolidWorks API-based simulation system to such
mechanisms requires a different approach for geometric and
kinematic modeling. This is explained by the fact that unlike
serial robots, the DH convention is not compliant with parallel
mechanisms, as their specific structure is described in a much
more complex manner (Fig. 7). The required modification, in
turn, affects the procedure of attaching coordinate frames to the
mechanism’s components, as it is mandatory for the two
procedures to be implemented in complete accordance, in order
for the simulation system to function in a proper way.

Figure 7. Modeling and simulation of a special type of parallel mechanisms.

Furthermore, the modified geometric and kinematic modeling
approach requires additional vector/matrix operations, a special
iterative procedure (based on the Newton-Raphson method), as
well as multiple additional functions and algorithms, which are
implemented as separate VBA procedures. Other than that, the
SolidWorks macro development workflow remains unchanged,
based on the algorithms, described in the previous chapters.

C. Human Body Mechanics

The final example of the proposed work is associated with
the performance of a human leg motion simulation. The specific
task focuses on the six DOF knee joint that allows the lower
part of the leg (tibia and fibula) to be arbitrarily positioned and
oriented with respect to its upper part (the femur) (Fig. 8).

Figure 8. Motion simulation of a human leg (a six DOF knee joint).

The described functionality of the knee joint is facilitated by six
specially designed components, which serve as the joint’s links.
Their specific arrangement and one DOF relative mobility
allow the mechanism’s final link (the tibia) to independently
perform three translational and three rotational movements with
respect to its zero link (the femur), as is the case with a real
human leg. In order to integrate this functionality within the
SolidWorks API-based simulation system, proper 3D modeling
of the mentioned components, their corresponding coordinate
frame attachments (based on the DH convention), and precise
implementation of a formal motion description must take place.
As a result, the user is able to ‘animate’ the human leg’s 3D
model, turning it into a beneficial instrument that can be utilized
by various specialists in the field. This example serves as proof
that the proposed SolidWorks API-based simulation system
provides versatile motion simulation and off-line programming
functionalities, with applicability ranging from industrial
manufacturing and robotics to human body mechanics.

VIII. CONCLUSIONS

This paper contributes to the implementation of a general-
purpose motion simulation and off-line programming system,
oriented toward manipulators and mechanisms used in various
fields. Based on the popular 3D CAD software SolidWorks and

its powerful API functionality, the developed system can be
considered as a universal and highly-efficient simulation tool
relevant to a wide range of applications. The advanced
capabilities of the proposed system are associated with the
implementation of a SolidWorks macro written in VBA.
Comprised of various procedures such as selection of moving
components, geometric and kinematic modeling, connection to
external motion control software, implementation of object-
handling, development of an intuitive graphical user interface,
etc., the advanced VBA application serves as a key component
of the simulation system, facilitating its versatile functionality.
The implemented concept is based on using the mechanisms’
existing 3D models created for design and manufacturing
purposes, thus eliminating the need for additional simulation
software and saving time, effort, costs and resources. As a
result, a unified tool that combines the useful features of
specialized simulators and universal CAD software is provided,
allowing engineers to simultaneously perform in-depth design,
simulation, analysis and optimization tasks, based on a single
platform. Future improvements are related to implementation of
efficient algorithms for collision detection, improved GUI
functionality, optimized structure of the VBA application, add-
in programming (VB.NET or C#), automated procedures for
assembly modifications and coordinate frame attachments, etc.

REFERENCES
[1] P. Neto, J. Pires, A. Moreira, “Robot Path Simulation: a Low Cost

Solution Based on CAD,” IEEE Conference on Robotics Automation and
Mechatronics (RAM), Singapore, June 28–30, 2010.

[2] J. Rubinovitz, Handbook of Industrial Robotics. John Wiley & Sons, New
York, Chapter 37, 1999.

[3] Y. Yong, M. Bonney, Handbook of Industrial Robotics. John Wiley &
Sons, New York, Chapter 19, 1999.

[4] S. Mitsi, K. Bouzakis, G. Mansour, D. Sagris, G. Maliaris, “Off-line
programming of an industrial robot for manufacturing,” International
Journal of Advanced Manufacturing Technology, August 2005.

[5] H. Wu, H. Deng, C. Yang, Y. Guan, H. Zhang, H. Li, “A Robot Off-line
Programming System Based on SolidWorks,” IEEE Conference on
Robotics and Biomimetics, Zhuhai, China, December 6–9, 2015.

[6] K. Baizid, A. Meddahi, A. Yousnadj, S, Ćuković, and R. Chellali,
“Industrial Robotics Platform for Simulation, Design, Planning and
Optimization based on Off-line CAD Programming,” MATEC Web of
Conferences, January 2016.

[7] H. Chen, W. Sheng, N. Xi, M. Song, Y. Chen, “CAD-based automated
robot trajectory planning for spray painting of free-form surfaces,”
Industrial Robot: An International Journal, 29(5), pp. 426–433, 2002.

[8] K. Baizid, R. Chellali, A. Yousnadj, A. Meddahi, B. Toufik, “Genetic
Algorithms Based Method for Time Optimization in Robotized Site,”
IEEE/RSJ International Conference on Intelligent Robots and System
(IROS), pp. 1359–1364, 2010.

[9] P. Neto, N. Mendes, R. Arajo, J.N. Pires, A.P. Moreira, “High-level robot
programming based on CAD: Dealing with unpredictable environments,”
Industrial Robot: An International Journal, 39(3), pp. 294–303, 2012.

[10] N. Bratovanov, V. Zamanov, “Modeling and Simulation of Robots for
Semiconductor Automation by Using SolidWorks API,” Proceedings of
Technical University of Sofia, vol. 66, issue 2, pp. 71–80, 2016.

[11] J. Denavit, R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” Journal of Applied Mechanics, vol. 1,
pp. 215–221, June 1955.

