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The paper contributes to the mechanics of a class of overconstrained parallel manipulators.
It presents an analytical approach to studying the mobility and accuracy of a special type of
parallel manipulator, which has found broad industrial application in semiconductor
automation. This is a three-degree-of-freedom closed loop mechanism, which exhibits local
mobility in close vicinity of specific (singular) configurations. A distinctive feature of this
mechanism When in a specific singular configuration is its ability to “use” the inherent
elasticity and backlash of its components in order to perform finite small rotations, instead of
using additional kinematic joints. The paper provides a formal description of the motion of
the mechanism and its accuracy characteristics by analyzing the equations of constraints
imposed on its links. The theoretical results are validated by computer simulations and 3D

modeling with SolidWorks.
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1. Introduction

Parallel manipulators (PM) have gained
significant research interest over the last 30 years
[Selvi 2012], [Gogu 2008], [Gue et al. 2012],
[Sotirov 2002]. Regardless of the fact that many PM
have  found industrial application,  the
implementation of overconstrained PM (OCPM) is
still limited. In 1996, Genmark Automation, Inc.
developed and started to manufacture a special type
of OCPM for semiconductor automation. The
mechanism was named GPR™ (from “Gimbal
Positioning Robot”) and was trademarked and
patented in 1996 [Genov et al. 1996]. The GPR
mechanism had 3 DOF and was designed to
perform two small independent rotations in the
range of +2 degrees and a larger-range (up to 20”)
translation. The terminal link (platform) was used as
a basis for installing serial planar-arms (one or two)
with up to 3 DOF each. The resulting hybrid
parallel-serial mechanism was capable of adapting
to misaligned equipment and compensating for the
deflection of the manipulated object, particularly in
the case of a very thin object [Genov et al. 1998].
Since 1996, thousands of GPRs have been
implemented in various semiconductor FABS,
turning out to be one of the largest industrial

implementations of OCPM in the world. A
distinctive feature of the overconstrained GPR
mechanism is its performance at singular
configurations — the ability to “use” the inherent
elasticity and backlash of its components in order to
perform the required small rotations instead of
using additional kinematic joints. In the case of
OCPMs, “overconstrained” does not indicate that
mechanism does not move; rather, in this case,
“overconstrained” indicates that the mechanism has
less mobility as required by the manipulating task
(i.e. it has motion deficiency in some directions). In
other words, specific moves would not exist if the
mechanism was ideal, becoming possible only
because of its imperfections (inherent elasticities
and backlashes of components). Previous paper of
the same authors [Bratovanov et al. 2017] proposes
how to eliminate this deficiency and provide a
formal description of the motion of the mechanism.
This paper is an extension of the previous work
focusing on more in-depth analysis on the mobility
and accuracy of the mechanism.

2. Structure of the GPR™ Mechanism

The GPR mechanism consists of a base and a
platform connected by three rods and kinematic
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joints. The three rods are parallel and are connected
to the base via fifth-order sliding joints. The axes of
these joints are parallel. The three rods are
connected to the platform via spherical joints. The
sliding joints are active and the spherical are
passive. There are two orthonormal coordinate
frames, O,e, e,e,; and Opepi€p,e,3, firmly
attached to the base and the platform respectively.
The centers of the spherical joints are denoted by
P,k =1,2,3 and the intersection points of the
sliding joints with the plane of the base passing
through the origin O, are denoted by By, k = 1,2,3.
There are also a number of radius-vectors defined:

rObPk = (xObPk yObPk ZObPk)T; Ipr = Oka;
I‘pk = Oppk; = Obpk; rpkpl = Pkpl’ see Figure 1
and Figure 2. The length of B, P, is denoted by q;

and q=(q; q; q3)T is the vector of the
generalized coordinates.

3. Mobility Analysis

The position and the orientation of all the links
of the mechanism are uniquely defined by a set of
parameters P € RN which are not necessarily
independent. A convenient choice for P is
@" r4,p, Yo,p, To,p,)"- The equations of
constraints imposed on P by the mechanism are:

1) @: RN > RY: ®(P) =0
Given the definition of P, eq. (1) can be rewritten as

Iy + q1€p3 —To,p, =0

Iy2 + q2€p3 —To,p, =0

Iy3 + qzepz —To,p, =0
(Tobpz - rObP1)2 - L%z =0
(o,p, — rObP2)2 —15;=0
(Yo,p, — rObP3)2 — 153, =0

The Jacobian matrix of ®(P) is

A,y I3 0; 0;
d_q’_ Ay 03 I 0;
ap | Az 0 0; —I;
0; Ay Ay Ay

000 000 000
A11=<000>|A21=<000>7A31=<000>
100 010 001

0 0 0

—z(xo,,P2 - xobp,) —2(3701,5’2 - }’o,,ﬁ) —Z(Zo,,P2 - Zo,,ﬁ)
A42 -
2("0,,P1 - XObP3) Z(J/obp1 - yO‘,P3) Z(Zobpl - Zo,,P3)

—2(Xo,p, — X0,p,) —2(Vo,p, — Yo,p,) —2(Zo,p, — Zo,p,)

Z(Xo,,Pz - Xohpl) Z(J/obpz - J/o,,Pl) Z(Zobpz - Zo,,Pl)
Ayz =
0 0 0

0 0 0
Ay = ( 2(x0bP3 - xoth) Z(J/obP3 - J/a,,Pz) Z(ZObP3 - Zo,,PZ) >
—Z(XO,,P1 - xObP3) —Z(YObpl - J/a,,P3) —z(zobpl - Zo,,P3)

The mobility of the mechanism characterized by
its DOF is h = N — Rank (<) [Jian et al. 2004]. In

the case of q; = q, = g3, Rank (%) =9and h=3.
In other words, the platform has instantaneous local
mobility with dimension 3. Even small differences
in the coordinates i, 02, g3, which are in the range
of the normal deviations from the parallelism of the
rods connecting the platform to the base, brings

Rank (%) to 11. This means that the platform has a

single DOF at the specific configuration, which is
an apparent deficiency. The GPR mechanism is
designed to work in a close vicinity of the singular
configuration q; = g, = gq5. It has to perform two
small (1.5 deg) independent rotations of the
platform about an axis which lies in the plane of the
platform and a vertical translation in a larger-range.

Since Rank (%) is equal to 11 everywhere except

for q; = q; = q3, the constraints imposed to the
platform by the spherical joints has to be relieved.
In real, this happens naturally because of the
imperfection of the joints and the inherent elasticity
of the links, which compensates the 2 DOF
deficiency. To model this behavior, we introduce
three virtual sliding joints at the platform as shown
in Figure 1. The axes of these joints coincide with
the respective radius-vectors W. The geometry of
the GPR mechanism can be represented by the
following parameters X = (I, I, I3)Tand Y =
(L2 Lys L31)T. At singular configuration [; = I, =
l; and Ly, = L,3 = L34, See Figure 3a. Figure 3b
shows a configuration with tilted platform [; # I, #
l; and Ly, # Ly3 # L3q. In order to further study
the mobility of the GPR mechanism augmented by
virtual joints, we introduce a parameter-vector ¥ =
(PTYT)T, @ € RN*3 and rewrite the equations of
constraints as

) (P) =0
It is important to be noted here that contrary to
rank(‘:i—:)), rank(j—:;) is always 12, i.e. it doesn’t

depend on the “distance” to singularity. Therefore
the augmented GPR mechanism has always 3 DOF

= dim(¥P) - rank(%). Let us differentiate eq. (2)
w.rt. P and Y and evaluate the properties of the
. 0D 0D . (0D

matrices (5) and (E)' The matrix (ﬁ) can be
represented in the form

P ( —2L;, O 0 )

—=[0;0;0; 0 —2L,; 0

Y 3 3 3 0 OZS_ZL31

and is always of full rank equal to 3. After rewriting
eg. (2) in the form

(3) ®(P,Y)=0



and differentiating we obtain
0P 0P
4) (E)dP + (H)dY =0
Let us consider the singular value decomposition
(SVD) [Hogben et al. 2007] of the matrices aa_: =
U,S,V, and Z—:[: = Uy S, Vy . The matrices S, and S,
are diagonal containing the singular values of the
L o® . .
matrices —= and N respectively: S, = diag(cp, op2,
., opu, 0) and Sy = diag(oy1, oy2, oy3). The

singular values are arranged in descending order,
i.e. Op1 > Gp2> el Op11 > 0 and Oyl > Oy2 > Oys. The

. 0D . .

twelfth singular value of 5 1S always zero since the
. P .

maximum rank of o 18 11. As shown above

do\ . . .
rank(ﬁ) is equal to 11 in “regular” configurations,

where q1#02#0s, and to 9 at singular configuration
(01=02=03). The smallest non-zero singular value
op11 Can be viewed as a measure of the “distance” to

singularity. We will show below that the SVD of Z—t

and ‘3—1’ can be effectively used in evaluating the
sensitivity of the vector P to variations of the vector
Y. All singular values of Z—:I: are different from zero

and vary slightly as the mechanism moves. In
particular, they are non-zero at singularity. The

.00 . . .
matrix —= has linearly independent columns and is
of full rank equal to 3. Therefore, its Moore-Penrose
pseudoinverse [Moore-Penrose pseudoinverse] is
sot_ (207 30\~ gaT
ay ~\ay ay) oy
a0t o0 _

_ ) oD .
which is also the left inverse of Sy e oy 5 = ls

Therefore eq. (4) can be solved for dy

It is seen from the last equation that ||dY|| obeys the
inequality

o= (2) Iapl < flavll = ||2ap| < o+ (%) fall

where ¢~ (%) and o+ (Z—D are the smallest and the

largest singular values of Z—; It is important to be
noted here that eq. (4) cannot be resolved for dP
since the matrix % is not of full rank, i.e. its
pseudoinverse is not left inverse. In this case we can
write the following inequalities

o (28) tam < [S2] - [23or] < o ()
(%)

JopP
()

(5) layll > lldpl|

(%)
(6) ldP|| < — =25 llay]

- (%)
The last two inequalities define the lower bound of
||dY]| for a given ||dP|| and the upper bound for
||[dP|| for a given ||dY]|. Since the virtual kinematic
joints introduced in the previous paper are
parameterized by the vector X all the relationships
above can be rewritten w.r.t. X given the definition

. Ay
of the matrix X

oY _(ll + 0-512)/1112 _(lz + 0-511)/1412 0
e ( 0 —(, +0.5103)/L,; —Us+ 0-512)/L23>
—(l; +0.513) /L3, 0 —(l3+0.50;) /L3y
namely
aq:dp acbaYdX _o
P Ty ax T
oD
d (a_P)
ldX|l =2 —-5< 4P|l
+ [ —
? (ax)
(%)
ldP|| < IldX|

4. Accuracy analysis

In this section we will analyze the accuracy of
the augmented GPR mechanism. This analysis
requires solutions of the direct and inverse
kinematic problems at position level. As it is seen
from Figure 3b, the center of the platform is shifted
in the amount of dr as a result of the tilting, which
in fact can be considered as inaccuracy if not
calculated correctly and compensated. In order to
solve the direct and the inverse kinematic problems
the equations of constraints imposed on X and Y
and their derivatives have to be studied. The
following expressions characterize the relationship
between X, Y, X and Y:

(7 FX,Y)=0
which is the same as

oF 2L+ L2+ O
0 2, +132l3+1,

X 21,41, o0 2L+

oF (2L O 0

8) v 0 —2L3 O
oy 0 0 —2L3;
. OF\10F . 09X
9 —_ (_) ory_ 9%
®) X x) vy ay



. OF\"'0F . Y,
10 — () ZExg_22

(o) Y= (6Y) X~ oX

Solving eq. (7) for X is not straightforward,
requiring the use of the well-known Newton-Euler
iterative approach. The solutions for Xand Y are
explicit and require conventional matrix-operations,
including matrix-inversion, see eg. (9) and eq. (10).

Figure 1. GPR mechanism geometry.

5. Direct Kinematics

Given the generalized coordinates q
=(q, q2 q3)7 find the radius-vector r of the center
of the platform O,, with respect to the center of the
base 0, and the orientation of the platform
represented by its normal vector n, which coincides
with eps. The first step of the direct kinematics
solution is to solve eq. (7) for X, given Yq. The
radius-vectors of the center of the spherical joints at
the platform with respect to the center of the base
are  ro,p, =Tp1 +qi€p3, To,p, = Tp2 + (q2€p3
and rg,p, = Ip3 + qz€p3. The last define the
vectors between the centers of the spherical joints at
the platform rp p, = Yo, p, — Yo,p,s Tp,p, = Yo, P, —
ro,p, aNd Tp.p =Ty, p, — Ty, p,- The components
of the desired vector Y are the Euclidean norms of
Tp,p,, Tp,p, aNd Tp p , Which in turn represent the
lengths L,, L,3 and L, respectively:

Ya = (llep,p, || Ive,p, [ lIver, [T

Figur 2. GPR Velocity Distribution.

The initial value of X corresponds to g; = g, =
q3 , ie. Xo =(R R R)T, where R = |0,P,|
|0,P,| = |0, P3| is the radius of the platform. The

initial value of Y is Yo = (RV3 RV3 RV3) .
Given Y4, Xo and Yo, the value of X which
corresponds to Yy is determined via the well-known
Newton-Rapson iterative procedure:

Xk:Xk—l +%(Yd_Yk—1) k=l,2

Normally, it takes 2-3 iterations to find a very
accurate solution to the equation X; = X(Y,). Once
X is found, the calculation of the radius-vector r of
the center of the platform w.r.t. the center of the
base and the orientation of the platform becomes
straightforward. The unit normal-vector of the
platform is calculated as

n= (rP1P2 x erP3)/||rP1P2 X I‘PZP3||
and the radius-vector r as

I =TIpq + Ji.€3 + 11 COS(S) el:)lp2

(11) +1, 5in(8) (n X ep,p,)
Where
e p, = Tr.p, ) = F—15+13%,
v ||rP1Pz” cos Bl 2l Lq;

sin(6) = +/1 — cos?(6)

6. Inverse Kinematics

Given the position of the platform zes, where
e3 = (00 1)" and its normal vector nq find the length
of the rods q = (g1 92 3)" connecting the base and
the platform. The desired normal vector of the
platform n, can be obtained by rotating the unit
vector e; about e; = (1 0 0) by an angle o and then
rotating the resulting vector n, about e, = (0 1 0) by
an angle .

n, = nz cos(a) + (e; X n3) sin(a)
+ e, (e;.n3)(1 — cos(a))

ng = Ngp = N, cos(f) + (e; X ng) sin(B)
+ ez (ez.ng) (1 —cos(B))

Then the vector of the generalized coordinates can

be determined as
(zep3 —Tp1)-Ng
(e
(zep3 —Tp2).-ng

(12) q= |

eb3.nd
(zeps — rb3)-nd/

€p3.Ny

Note that due to the overconstrained nature of
the GPR mechanism, the center of the platform may
slightly shift with respect to ze;. Therefore, once
the generalized coordinates according to eq. (12) are
found, the actual position of the center of the
platform must be calculated through the solution to
the direct kinematics problem, see Section 1.



(a) (b)

Figure 3. Platform (a) — parallel to the base; (b) — tilted.

7. Simulations
The focus of the simulation study is to evaluate

. L 0D
how the singular values of the matrix 5 and >

change as the mechanism moves and how these
singular values are correlated with dY and with the
range of motion dX of the virtual joints. In other
words — how much of backlash/compliance is
needed for the GPR mechanism to guarantee a
specific motion dP. In the simulation it was
anticipated that dP =[0 0100000000 0 10]"
with norm equal to 14.141 mm.

Specific motion pattern which involves tilting
and translation of the platform was selected. It is
clearly seen form Figure 4 that during the whole
motion the mechanism goes through three singular
configurations which allowed studying the
performance of the mechanism at these
configurations. Figure 5 shows how the smallest
singular value o~ (aa_:) of the matrix Z—: and the
norm of the vector dY change during the motion of

the mechanism. It is clearly seen from this figure

P

that at singular configurations both ¢~ (5) and

||dY]|| take their minimum values of 0.0013 and

0.0181 mm, respectively. The maximum value of

_ (0D . .
o~ (53) is 00871 and of [laY] is 1.234 mm,

which are significantly larger than the respective
minimum values. This means that at singularity the
“amount” of motion of the virtual joints needed to
guarantee motion of the platform in the range

specified by ||dP|| = 14.14 mm is 18.1 micron. The
0D

. _ (0@ 0P
singular values o (E)’ ot (ﬁ) and ot (a_x) can
be used to determine the lower bounds of ||dY]| and
[|dX|| corresponding to ||[dP|| = 14.14 mm, see
Figure 6. The knowledge about these bounds could
be very useful during the design and component
selection of the mechanism.

Figure 7 is related to the accuracy of the GPR
OC mechanism. It shows how the center of the
platform moves during rotation of the platform in
the range [—2°, 2°]. As it is seen from the plot, dx
and dy have magnitude of less than 30 micron. The
deviation in the vertical direction dzis negligibly
small, less than 2 micron (not shown).
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Figure 4. General coordinates used to simulate tilting.
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Figure 7. Deviations of the center of the platform.

8. Conclusions

This work further contributes to the mechanics
of GPR mechanism and especially to studying its
mobility and accuracy in a vicinity of singular
configurations. The relationship between the finite
rotations of the platform and the imperfections of



the components, connecting the platform and the
base was in-depth analyzed by using approaches
from the analytical mechanics. The Singular Value
Decomposition of the Jacobian matrices of the
equations of constraints imposed on the moving
platform was found to be an effective tool for
determining the relationship between the range of
motion of the previously introduced virtual sliding
joints and the effective range of motion of the
platform. The SVD approach helped at determining
the boundaries of the motion of the virtual joints
proving to be very small and within the range of the
inherent imperfections of the mechanism’s
components. As in the first paper, the authors
acknowledge that there are many different ways for
introducing virtual joints and therefore the results
obtained in this study are not exhaustive. However
the proposed analytical approach to studying the
kinematics of the OC GPR mechanism makes a step
forward to introducing alternative and higher DOF
virtual joints which better represent the effect of
backlashes and deformations associated with the
mechanism. It is believed that the recent work adds
to establishing a basis for future studies in the area
of kinematics and dynamics of OCPM.
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AHAJIN3 HA MOBUJIHOCTTA U TOUHOCTTA HA KJIAC
CBPBXOI'PAHNUYEHMU ITAPAJIEJIHU MEXAHU3MU
Huxonau bBPATOBAHOB

3namxo COTHPOB Bnaoumup 3AMAHOB

Ilpeocmasen e anarumuuern nooxod 3a U3yHasawe HA MOOUTHOCMMA U MOYHOCMMA HA
cneyuaner mun céPbX02PaAHUYeH NapaneieH MAHunyIamop, Hamepul WUpoKo NPULONCEHUE 8
agmoMamu3ayuama Ha NoIYnpo8ooOHuKogama unoycmpus. Mexanusmvm e paspabomen u
namenmosan om ¢upma Genmark Automation, Inc. npes 1996 noo naumenosanuemo GPR™
(Gimbal Positioning Robot). GPR e sameopen mexanuzvm ¢ 3 cmenenu na c60600a,
CbCMOosIY ce Om OCHO8A U NAAMPOPMA (UBHBIHUMENTHO 36€HO), C8bP3AHU NOMENCOY CU
nocpeocmeom 3 YUMUHOPpUUHU 36eHa (npvmu) u 6 KUHeMamuyHu epv3ku — 3 niav3eauju 6
ocnosama (akmuguu) u 3 cpepuynu ¢ niamgpopmama (nacusuu). Ilnamgopmama moodnce oa
U36bPUIBA 08 MAIKU He3A8UCUMU pomayuu 6 unmepsaia £2° u eOna mpauciayus 6v6
6EPMUKANHO Hanpasienue ¢ 2olemuna 0o 20°. Omauvumenna uepma HA MeXaHUIMA €
cnocobhocmma My 0d ,,Usnon3ea’ elacmuuHoCmma U Xaabunume Ha KOMIOHeHmume cu 3d
U3BBPUIBAHEMO HA HE3A8UCUMUMe PpOmayuu Ha niampopmama (6 OIUKA OKOIHOCM HA
CUHZYTIAPHA KOHQDUIYpayus), emuMUHUPAKU Hy’Hcoama om OONBAHUMETHU KUHeMAMUYHU
epw3ku. Tlosuyuama u opueHmayusma Ha GCUYKU 36eHA HA MEXAHUsMda ce Onuceam



eOHOo3HayHO ¢ nomowma  Ha  eekmopa P, cwowvpocaw 12  napamemwvpa
T T T T T T
Q" ro,p, To,p, Yo,p,) » KbOEMO q € 6eKkmopbm Ha 06obwenume koopounamu di, Gz, 4s, @
T T T
Yo,p, Yo,p, Yo,p, Ca 6eKkmopume, cevp3sawu yenmwvpa Ha ocrhosama Op ¢ yenmwvpa na
cvomeemuume chepuunu cmasu P1, P2 u P3 (ue. 1, ue. 2). Mobunnocmma na mexanuzma
ce uzcnedsa upes amanusupame Ha ypaswenusima Ha ceomempuunume épwv3ku ®(P) =0 u

msxuama mampuya Ha Axoou %. H3zeecmno e, ue bposm Ha cmeneHume Ha c¢80600a Ha
mexanusma (h) e pasen na pasnuxama na pasmepnocmma na eexkmopa P (N=12) u panea na
mampuyama %Z h =N - rank (%). B cnyuas, koecamo q1 = q, = q3, rank (%)=9 uh=3.C
opyau Oymu, niamgopmama uma J10KAIHA MOOUIHOCM ¢ pasmeprocm 3. Jlopu MunumanHu
OMKIOHEHUs HA 4,y Ul G5 0osexcoam 0o rank (%)211, Koemo o3Hauasa, we oposam Ha

cmenenume Ha c60000a HA MEXAHUZMA 3a 6CAKA KOHQU2Ypayus, pasiuina om CUHSYIApHama
(91 = q2 = q3), e pasen na 1. Ha npaxmuxa mosu ouesuden Heoocmue Ha 2 CmeneHu Ha
€60000a, HaNodCeH Om 2eoMempudHume 6pb3KU HA MeXAHUusMd, ce npeooonsisa no
ecmecmeer HauuH OnacooapeHue HA HeCb8bpPUIeHCmeama Ha c@epuynume nazepu U
enacmuyHocmma Ha Komnonenmume. Mooerupanemo Ha mosa nosedenue ce OCbWeCmensa
upe3 8vedNcoane Ha BUPMYATHU NIb32AWU 8DB3KU KbM CMPYKMYPHO-KUHEMAMUYHUA MOOe
Ha mexanuzma, nokazauu xa gue. 1. C maAxXHa nomow e 8b3MOINCHO KOAUUECMEEHO 0a ce
onpedenu 3asucumocmma mexncoy osudicenuemo na niamegpopmama (||dP||) u neobxooumume
xnabunu u depopmayuu na xomnonenmume (||dX||, ||dY||). Hzcredsa ce u nescenanomo
uzmecmeane na yenmvpa na niamgopmama Op cnpamo yenmovpa na ocnosama Op, nopooero
om cepvXOocpanHuvenama CmMpyKmypda HA Mexanusma. 3a yenma ce pewiaeam npasama u
obpamnama 3a0a4u HA KUHeMAmuKama Ha HU8o no3uyus. B donvanenue, moournocmma na
GPR ce uscnedsa u upes memoda 3a OeKOMNO3UYUS NO CUHSYNAPHU CHIOUHOCMU Hd

0P . .
Mampuyama Ha Hrobu > Tvii kamo HeliHusm paue He Modce 0a Ovoe no-2onsam om 11,

068aHAECeMOmo CUHSYIAPHO YUCIO Gpz2 € eunazu paeéno na 0 (npu ecsxa ,pecyispna‘
KoHGueypayus Ha mexaunuzma). C O0obaudcasanemo KvM ,,CuUHeyIapHa ' KoHuzypayus
cmouHocmume Ha O0geme HAU-MAJKU HEHYNe8U CUHSYJAPHU YUCAA Oplo U Opli HAMAIAEAM,
docmueatiky (0 umeHHO npu q = qy = q3. B mosu cmucwvn Gpo U Opi1 Moeam da OGvoam
pazenexicoanu Kamo noxasamen 3a Oauzsocmma 00 ,,CUHSYISPHA ' KOHpueypayus Ha
Mexanusma. Ycemanoessa ce, ue memooa 3a OeKOMNO3UYUSL NO CUHSYIAPHU CMOUHOCMU e
ehexmugen uncmpymenm 3a uzcieoeanemo na mooumocmma na GPR u 3a ananusupanemo
HA 6PBb3KAMA MeHCOY 20NEMUHAMA U 0OX6AMA HA OBUMNCCHUE HA SUPMYAIHUME 6PB3KU,
uspasssawu xaabunume u oegpopmayuume na komnonenmume (||dX||, [|dY||), u orceranomo
npemecmeane na naameopmama (||dP||). Ipeonoscenusm nooxoo 3a mooeruparne na GPR

mexanusma ce sepupuyupa upes komniomvpru cumyrayuu u SolidWorks mooen. @oxkycom e

0P

. P
uscne0s8ane HA UIMEHEeHUemo Ha CUHZYIApHUmME CMOUHOCMU HA mampuyume E u 6_Y npu

OCHUeCmea6anemo HA KOHKpemHU OGUJICeHUs Ha niamgopmama, U KOJIUYECNBEHO
YCmManosseane Ha Heooxooumume xnadbunu u depopmayuu. 3a yeama ce CUMyIUpa RPUMEPHO
d8UdICEHIe, CHCMOSIO Ce 8 NpeMecmeane Ha 000OujeHama KOOPpOUHAmMa s HA Pa3CcmMosHue
10mm xamo ce ananusupam 2oasam OPOU pa3TUuHU HAYAIHU KOHPUSYpayuu, 8 mosa Yyucio 3
cuneynapuu (Que. 4). Om pesynmamume (pue. 5, ¢gue. 6) cmasa jACHO, ue UMEHHO &
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,,0cobenume * Konuaypayuu Hau-muaiKkomo CUHSYIAPHO YUCTO T (5) Ha mampuyama o,

kakmo u Hopmama ||dY| umam munumannu cmounocmu. Tosea o3nauasa, uye 6 mesu
Kougueypayuu oceranomo npemecmeare Ha niam¢popmama ||dP|| ce ocvwecmesssa c
MuHUMAHu npemecmeéanus Ha eupmyarnume épwv3ku ||dY|| — wiu 6 peannus cayuaii — ¢
MUHUMATHU X1abuHu u deghopmayuu Ha Komnonewmume. | oiemunama Ha npemecmeanemo
Ha yenmovpa na naamgopmama Oy, cnpsimo yenmwvpa na ocnogama Oy ce uscnedsa, upes
peuiasane Ha 3a0auume HA KuHemamukama. 3a yeama ce CumMynupa emopu mun 0sudiceHue,
CHCMOSIYO Ce 8 NOCTe)08AMENHO HAKIOHABAHe Ha niampopmama na £2°, cmapmupaiiku om
PA3IUYHU HAYATHU KOHUeypayuu. Yemanossnsa ce, ye omkionenusima 6 pagnunama (dx, dy)
ca ¢ eonemuna okono 30um, Ookamo mesu 6v8 eepmuxaino Hanpasienue (dz) ca
npeHebpedcUMo MAkuy (no-maaku om 2um).



