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Abstract. Imagine a business tool that has the knowhow of the human brain and can boost personalization, cut
time on menial tasks and improve service delivery. Artificial neural networks and artificial intelligence networks
modeled after the human brain  are gearing up to have a huge impact on business processes everywhere. In fact,
many companies, whether they know it or not, are already taking advantage of neural networking technology and
creating frameworks for its implementation. Microsoft has explored imaging deep neural networks to classify
malware and has recently previewed Project Brainwave, a hardware architecture that makes real-time AI
calculations. This project is being tested for providing solutions for automated optical inspection system. The system
will scan products on the assembly line for defects with lighting speed. Meanwhile, IBM has released a beta of its
Neural Network Modeler in Watson Studio that lets developers use a visual approach to designing deep learning
architectures for image, text and audio data. In fewer words this is the game changer of business processes in this
new era of Artificial intelligence.
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INTRODUCTION

Lets take for example Google Cloud Speech-to-Text, a tool released this year that helps developers convert audio
to text by applying neural network models using an application programming interface. It is able to recognize 120
languages and can be employed for purposes such as transcribing audio from call centers. Facebook’s DeepText tool
is a deep-learning-based text understanding engine that leverages neural network architectures, used to better target
the ads they place so that they appear to users who are most likely to find them relevant. We see how one of the
biggest companies are already operating and introducing solutions with the use of artificial neural networks.

We will introduce a simple design for implementing java neural network for better process optimization and
faster calculation which can be implemented in every known business process.



Neural network

Neural network can be described like how the brain works. Unfortunately, we do not know as of yet how exactly
does the brain really work but we do know a little bit of the biology behind this process: the human brain consists of
100 billion cells called neurons, connected together by synapses. If sufficient synapses connected to a neuron fire,
then that neuron will also fire. This process is known as "thinking".

We thus try and model the above process using a very simple example that has 3 inputs (synapses) and results in a
single output (1 neuron firing).

A SIMPLE PROBLEM

We will train our above neural network to solve the following problem. Can you figure out the pattern and guess
what the value of the new input should be? 0 or 1?

Examples Input Output
Example 1 0 0 1 0
Example 2 1 1 1 1
Example 3 1 0 1 1
Example 4 0 1 1 0

New situation 1 1 0 ?

The answer is actually very simply the value of the left-most column, i.e. 1!



THE TRAINING PROCESS

So now that we have the model of a human brain, we will try and get our neural network to learn what the pattern is
given the training set. We will first assign each input a random number to produce an output.

The formula for calculating the output is given as
follows:∑weighti.inputi=weight1.input1+weight2.input2+weight3.input3∑weighti.inputi=weight1.input1+weight2.i
nput2+weight3.input3

As it turns out we would like to normalize this output value to something between 0 and 1 so that the prediction
makes sense. After normalization we compare the output with the expected output of our inputs. This gives us the
error, or how far off is our prediction. We can then use this error to slightly adjust the weights of our neural network
and try our luck on the same input again. This can be summarized in the following image:



We repeat this training process for all the inputs 10,000 times to reach a satisfactorily trained neural net. We can
then use this neural net to make predictions on new inputs!

Before we jump into the implementation however, we still need to clarify how we achieved the normalization and
the weight adjustment based on the error (also known as back-propagation).

NORMALIZATION

In a biologically inspired neural network, the output of a neuron is usually an abstraction representing the rate of
action potential firing in the cell. In its simplest form, this is binary value, i.e., either the neuron is firing or not.
Hence, the need for normalization of this output value.

To achieve this normalization we apply what is known as an activation function to the output of the neuron. If we
take the example of a really simple Heaviside step function which assigns a 0 to any negative value and a 1 to any
positive value, then a large number of neurons would be required to achieve the required granularity of slowly
adjusting the weights to reach an acceptable consensus of the training set.

As we will see in the next section on back-propagation, this concept of slowly adjusting the weights can be
represented mathematically as the slope of the activation function. In biological terms, it can be thought of as the
increase in firing rate that occurs as input current increases. If we were to use a linear function instead of the
Heaviside function, then we would find that the resulting network would have an unstable convergence because
neuron inputs along favored paths would tend to increase without bound, as a linear function is not normalizable.

All problems mentioned above can be handled by using a normalizable sigmoid activation function. One realistic
model stays at zero until input current is received, at which point the firing frequency increases quickly at first, but
gradually approaches an asymptote at 100% firing rate. Mathematically, this looks like:11+e−x11+e−x

If plotted on a graph, the Sigmoid function draws an S shaped curve:



Thus, the final formula for the output of a neuron now
becomesOutput=11+e−(∑weighti.inputi)Output=11+e−(∑weighti.inputi)

There are other normalization functions that we can use but the sigmoid has the advantage of being fairly simple and
also having a simple derivative which will be useful when we look at the back propagation below.

BACK-PROPAGATION

During the training cycle, we adjusted the weights depending on the error. To do this, we can use the "Error
weighted derivative"
formulaAdjustment=error.input.SigmoidCurveGradient(output)Adjustment=error.input.SigmoidCurveGradient(outp
ut)

The reason we use this formula is that firstly, we want to make the adjustment proportional to the size of the error.
Secondly, we multiply by the input, which is either a 0 or a 1. If the input is 0, the weight isn’t adjusted. Finally, we
multiply by the gradient of the Sigmoid curve (or the derivative).

The reason that we use the gradient is because we are trying to minimize the loss. Specifically, we do this by
a gradient descent method. It basically means that from our current point in the parameter space (determined by the
complete set of current weights), we want to go in a direction which will decrease the loss function. Visualize
standing on a hillside and walking down the direction where the slope is steepest. The gradient descent method as
applied to our neural net is illustrated as follows:

1. If the output of the neuron is a large positive or negative number, it signifies the neuron was quite confident
one way or another.

2. From the sigmoid plot, we can see that at large numbers the Sigmoid curve has a shallow gradient.
3. Thus, if the neuron is confident that the existing weight is correct, it doesn’t want to adjust it very much

and multiplying by the gradient of the sigmoid curve achieves this.

The derivative of the sigmoid function is given by the following
formulaSigmoidCurveGradient(output)=output.(1−output)SigmoidCurveGradient(output)=output.(1−output)Substit



uting this back into the adjustment formula gives
usAdjustment=error.input.output.(1−output)Adjustment=error.input.output.(1−output)

CODE

An important but subtle point that was missed out when explaining the mathematics above was that for each training
iteration, the mathematical operations are done on the entire training set at the same time. Thus, we will make use of
matrices to store the set of input vectors, the weights and the expected outputs.

You can grab the entire project source here: https://github.com/wheresvic/neuralnet. For the sake of learning, we
implemented all the math ourselves using only the standard java Math functions :)

We will begin with the NeuronLayer class which is just a placeholder for the weights in our neural net
implementation. We provide it with the number of inputs per neuron and the number of neurons which it can use to
build a table of the weights. In our current example, this is very simply the last output neuron which has the 3 input
neurons.

public class NeuronLayer {

public final Function activationFunction, activationFunctionDerivative;

double[][] weights;

public NeuronLayer(int numberOfNeurons, int numberOfInputsPerNeuron) {
weights = new double[numberOfInputsPerNeuron][numberOfNeurons];

for (int i = 0; i < numberOfInputsPerNeuron; ++i) {
for (int j = 0; j < numberOfNeurons; ++j) {

weights[i][j] = (2 * Math.random()) - 1; // shift the range from 0-1
to -1 to 1

}
}

activationFunction = NNMath::sigmoid;
activationFunctionDerivative = NNMath::sigmoidDerivative;

}

public void adjustWeights(double[][] adjustment) {
this.weights = NNMath.matrixAdd(weights, adjustment);

}
}

Our neural network class is where all the action happens. It takes as a constructor the NeuronLayer and has 2
main functions:



 think: calculates the outputs of a given input set
 train: runs the training loop numberOfTrainingIterations times (usually a high number like

10,000). Note that the training itself involves calculating the output and then adjusting the weights
accordingly

public class NeuralNetSimple {

private final NeuronLayer layer1;
private double[][] outputLayer1;

public NeuralNetSimple(NeuronLayer layer1) {
this.layer1 = layer1;

}

public void think(double[][] inputs) {
outputLayer1 = apply(matrixMultiply(inputs, layer1.weights), layer1.activatio

nFunction);
}

public void train(double[][] inputs, double[][] outputs, int numberOfTrainingIter
ations) {

for (int i = 0; i < numberOfTrainingIterations; ++i) {

// pass the training set through the network
think(inputs);

// adjust weights by error * input * output * (1 - output)

double[][] errorLayer1 = matrixSubtract(outputs, outputLayer1);
double[][] deltaLayer1 = scalarMultiply(errorLayer1, apply(outputLayer1,

layer1.activationFunctionDerivative));

// Calculate how much to adjust the weights by
// Since we’re dealing with matrices, we handle the division by multiplyi

ng the delta output sum with the inputs' transpose!

double[][] adjustmentLayer1 = matrixMultiply(matrixTranspose(inputs), del
taLayer1);

// adjust the weights
this.layer1.adjustWeights(adjustmentLayer1);

}
}



public double[][] getOutput() {
return outputLayer1;

}
}

Finally we have our main method where we setup our training data, train our network and ask it to make predictions
on test data

public class LearnFirstColumnSimple {

public static void main(String args[]) {

// create hidden layer that has 1 neuron and 3 inputs
NeuronLayer layer1 = new NeuronLayer(1, 3);

NeuralNetSimple net = new NeuralNetSimple(layer1);

// train the net
double[][] inputs = new double[][]{

{0, 0, 1},
{1, 1, 1},
{1, 0, 1},
{0, 1, 1}

};

double[][] outputs = new double[][]{
{0},
{1},
{1},
{0}

};

System.out.println("Training the neural net...");
net.train(inputs, outputs, 10000);
System.out.println("Finished training");

System.out.println("Layer 1 weights");
System.out.println(layer1);

// calculate the predictions on unknown data



// 1, 0, 0
predict(new double[][], net);

// 0, 1, 0
predict(new double[][], net);

// 1, 1, 0
predict(new double[][], net);

}

public static void predict(double[][] testInput, NeuralNetSimple net) {
net.think(testInput);

// then
System.out.println("Prediction on data "

+ testInput[0][0] + " "
+ testInput[0][1] + " "
+ testInput[0][2] + " -> "
+ net.getOutput()[0][0] + ", expected -> " + testInput[0][0]);

}
}

Running our above example we see that our network has done a pretty good job of predicting when the leftmost
input is 1 but can't seem to get the 0 quite right! This is because the second and third input weights both needed to
have been closer to 0.

Training the neural network
Finished training
Layer 1 weights
[[9.672988220005456 ]
[-0.2089781536334558 ]
[-4.628957430141331 ]
]

Prediction on data 1.0 0.0 0.0 -> 0.9999370425325528, expected -> 1.0
Prediction on data 0.0 1.0 0.0 -> 0.4479447696095623, expected -> 0.0
Prediction on data 1.0 1.0 0.0 -> 0.9999224112145153, expected -> 1.0

CONCLUSIONS

After some detailed research we come to the following conclusion.
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