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Abstract:  Multiple reference frames orientated state space nonlinear mathematical models for brushless DC motors are derived in the 
paper using the power invariant dqo transformation in rotating and stationary form. The nonlinear state space models obtained are 
strictly orientated, decoupled, and linear with respect to the model parameters. This allows convenient application of advanced control 
theory differential geometric design approaches including multi-input multi-output feedback linearization and nonlinear adaptive sys-
tems design. Moreover the decoupling of the currents permits closed-loop nonlinear systems synthesis accomplishing simultaneous 
elimination of the torque pulsations and copper losses minimization. The nonlinear state space models derived are simulated to investi-
gate their properties.  
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INTRODUCTION 

The interest in permanent-magnet motors during the last thirty 
years is due to the multiple advantages they offer. The brush-
less DC motors (BDCM) are part of this motor class. They are 
the latest choice of researches due to their high efficiency, si-
lent operation, compact size, high reliability and low mainte-
nance requirements. The BDCM have trapezoidal back elec-
tro-motive force and require rectangular-shaped stator phase 
currents to produce constant torque [16, 17]. The difference 
between the conventional brushed DC motor and the BDCM 
is that the latter has no brushes, commutator, and field wind-
ing. The excitation of these motors is achieved by strong rare-
earth permanent magnets in the rotor providing very powerful 
field without the need of excitation current and no electrical 
losses in the rotor [6, 7]. As a result they are very efficient en-
ergetically while generating comparatively high torque. The 
lack of brushes leads to longer life span of the BDCM. These 
motors have maximal ratio between generated torque and mo-
tor inertia or total mass conditioned by the high power density 
of the BDCM. The BDCM models in original coordinates are 
commonly used in practice for analysis and design with vari-
ous types of control methods [1, 2, 3, 10, 11, 15], because the 
coordinate transformations of these motors [4] do not reduce 
the order of the system as in the synchronous motor case. The 
advantage of the dqo transformation and its partial case the 

o  transformation presented in this article is the decom-
position into two virtual motors: a single-phase motor capable 
to provide pulsating torque only (the homopolar part) and a 
two-phase motor with rotating field (the dq part). The mathe-
matical equation of the homopolar current oi , which does not 
exist in original coordinates, is very useful for the torque pul-
sation elimination. This is achieved by controlling the ho-
mopolar current oi to converge asymptotically to zero. An-
other advantage is the easy synthesis of copper minimization 
control via the current di .  
 
The above mentioned peculiarities prove that the BDCM are 
highly nonlinear systems and the coefficients of their nonlin-
ear mathematical models are time-variable and some of them 
are also unknown. These two real circumstances require the 
use of advanced nonlinear control methods for a high per-
formance closed-loop control system design. Suitable ap-

proaches in this context are the Lie algebra multivariable 
feedback linearization based on differential geometry, adap-
tive feedback linearization, nonlinear observers synthesis, and 
adaptive nonlinear control design methods based on Lyapunov 
stability theory [5, 8, 9, 13, 12, 14]. The joint approach of 
nonlinear adaptive control design with nonlinear observers can 
yield the highest performance closed-loop systems imple-
mentation if some unsolved yet problems of this design ap-
proach are worked out in the near future.  
 
The paper presents a derivation of multiple reference frames 
nonlinear state space mathematical models for BDCM, using 
the power invariant dqo transformation and its partial case the 

o  transformation. The models derived are in strictly orien-
tated state space form suitable for multivariable feedback lin-
earization, nonlinear adaptive control and nonlinear observer 
design. The mathematical equivalence of the nonlinear models 
is confirmed by simulation. 
 
 

STATE SPACE MODEL IN ORIGINAL COORDINATES 
 
The derivation of this model is based on the assumptions that 
the induced by the harmonic fields of the stator currents in the 
rotor, the iron losses, and the leakage losses are neglected. The 
initial equation in matrix-vector form is  

abc
abc

abcabc dt
d EILRIV , (1) 

T]v,v,v[ cbaabcV , T]i,i,i[ cbaabcI , T]e,e,e[ cbaabcE  
are the vectors of the stator voltages, currents, and EMF re-
spectively. The matrix of the stator resistances and the matrix 
of the inductances are  

R00
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0ML0
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The phase voltage equation is identical with the armature volt-
age equation of the DC motor. The resemblance to a DC ma-
chine and the lack of brushes and commutator are the reasons 
for which this machine is called permanent magnet brushless 
DC machine. The electromagnetic torque is  
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The instantaneous induced EMF can be written as  
mrapa )(fe , mrbpb )(fe , mrcpc )(fe  (4) 

where the functions )](f),(f),(f[ rcrbra
T
abcf  have the 

same trapezoidal shape as ae , be , and ce  with a maximum 
magnitude 1 . The induced EMF edges are rounded because 
the EMF are derivatives of the flux linkages, which are con-
tinuous functions. The fringing also makes the flux density 
functions smooth with no abrupt edges. The electromagnetic 
torque can be rewritten as  

abc
T
abcpeT If . (5) 

The motion equation for system with inertia J, friction coeffi-
cient B, and load torque LT  is  

m
Lem

J
B

J
T

J
T

dt
d . (6) 

The electrical speed and position are related by  

m
r P

dt
d , (7) 

where P is the number of pole pairs, m  is the mechanical ro-
tor speed, and r  is the electrical rotor position. Considering 
the BDCM dynamics according to equations (1), (5), (6), and 
(7) after choosing the state space vector  

TT ]i,i,i,,[]x,x,x,x,x[ cbamr54321x ,  (8) 
and control vector  

TT ]v,v,v[]u,u,u[ cba321u  (9) 
leads to the first state space model of the BDCM in original 
abc coordinates  
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with Pc1 , p2c , Jc3 , J/Tc L4 , B/Jc5 , 

)MLR/(c6 ,  )ML(/=c p7 , )ML1/(=c8 . 
 
 

STATE SPACE MODEL IN dqo COORDINATES 
 
The model of the BDCM in dqo reference frames is derived 
by the dqo transformation. The dqo transformation is used 
when the rotating speed of the reference frames is different 
from zero. The straight and the inverse dqo transformations 
are  
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for reference frames rotating with the electrical rotor speed 
r  (rotor reference frames). This transformation is power in-

variant as 1
dqo

1
dqo ][TT  and it is applicable for signals with 

arbitrary shape. Applying the dqo transformation for the ma-

trix-vector equation (1) gives the matrix-vector equation of the 
BDCM electrical dynamics in rotating dqo coordinates written 
in terms of the currents  
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The transformed electromagnetic torque (5) is given by  

dqodqopdqo
1

dqodqodqopedqo
TTTT IfITTf . (13) 

Taking into account edqoT , the motion equation (6), the elec-
trical dynamics (12) and choosing the state space vector  

TT ]i,i,i,,[]x,x,x,x,x[ oqdmr54321x  (14) 
leads to the first state space model  
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and )x,x,x(x 431c4 , and )x,x,x(x 431c5  are similar nonlinear 
functions resulting from the dqo transformation. The control 
vector TT ]v,v,v[]u,u,u[ oqd321u  and the parameters 

Pc1 , p2c , Jc3 , J/Tc L4 , J/Bc5 , 
)ML/(Rc6 ,  )ML/(c p7 , )ML/(1c8 . The ad-

vantage of the dqo transformation is that it decomposes the 
machine in two virtual motors: a single-phase motor only ca-
pable to provide a pulsating torque (the homopolar part) and a 
two-phase motor with a rotating field (the dq part). This ad-
vantage gives the facility for synthesis of an asymptotically 
stable subsystem for zeroing the homopolar current, which 
would eliminate the torque pulsation. Another convenience is 
the easy control synthesis minimizing the copper losses. It is 
achieved by controlling the current di  to converge to zero.  
 
 

STATE SPACE MODEL IN o COORDINATES 
 
The straight o  transformation and its inverse are a partial 
case of the dqo transformation (11)  

)0(dqoo TT , (16a) 

)0(1
dqo

1
o TT . (16b) 

This transformation converts the model of the BDCM in new 
stationary coordinates and it is also power invariant as 

1
o

1
o ][TT . The transformation of the original BDCM 

model in o  coordinates is easier than in the dqo coordi-
nates. Applying the transformation (16) via the rule 

abc
1
oo xTx  to equation (1) leads to  

o
o

oo dt
d

E
I

LRIV .  (17) 

The electromagnetic torque (5) in o  coordinates reads  

oopo
1
ooopoe

TTTT IfITTf . (18) 
Considering (17), (18), the mechanical dynamics (6), and (7) 
with state space vector  

TT ]i,i,i,,[]x,x,x,x,x[ omr54321x , (19) 



and control vector  
TT ]v,v,v[]u,u,u[ o321u  (20) 

gives the third state space model in o  coordinates  
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where Pc1 , p2c , Jc3 , J/Tc L4 , J/Bc5 , 
)ML/(Rc6 ,  )ML/(c p7 , )ML/(1c8 . The 

o  transformation yields a simpler state space model than 
the dqo transformation which is an advantage. Both transfor-
mations are power invariant and decompose the machine into 
two virtual motors. The main advantage of these transforma-
tions is that they provide a separate mathematical equation of 
the homopolar current oi , which does not exist in original co-
ordinates, but it is useful for the torque pulsation elimination 
being an essential goal of the control for these motors. All this 
is possible because the o  current equations are decoupled 
as in original coordinates which allows independent control of 
the currents.  
 
 

SIMULATION AND SYSTEM TIME RESPONSES 
 
The three state space models derived are simulated as open 
loop systems from zero initial conditions and with passive 
load torque created by the friction included in the models. 
Figure 1 confirms the equivalence of the three state space 
models displaying  the  coincidence  of  the  torques  and  the  
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Figure 1: Torque and angular velocity responses 

 
angular velocities which are outputs of the simulated systems. 
The evolution of the currents is shown on figures 2, 3, and 4 in 
original abc, rotating dqo, and stationary o  coordinates 
respectively. The pulsations of the current oi  create the torque 
pulsations seen on figure 1a. The trapezoidal electromotive 

forces of the BDCM in abc and o  coordinates can be seen 
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Figure 2: Currents in abc coordinates 
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Figure 3: Currents in rotating dqo coordinates 
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Figure 4: Currents in stationary o  coordinates 
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Figure 5: EMF in abc coordinates 

 
on figures 5 and 6. The control input voltages evolve on figure 
7 in abc coordinates.  
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Figure 6: EMF in o  coordinates 
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Figure 7: Control voltages in abc coordinates 

 
The torque pulsations caused by the pulsations of the current 

oi  can be eliminated if this current is controlled to converge 
asymptotically to zero.  
 
 

CONCLUSIONS 
 
The paper has presented the derivation of state space mathe-
matical models of BDCM in original, dqo, and o  coordi-
nates. This is achieved by the dqo transformation and its par-
tial case, when 0r ,  the  o  transformation. These trans-
formations do not reduce the order of the system as in the syn-
chronous motor case. Their main advantage is the decomposi-
tion of the machine into two virtual motors. Both transforma-
tions give the mathematical equation of the homopolar current 
which does not exist in original coordinates. This equation is 
another advantage that gives the chance for synthesis of as-
ymptotically stable subsystem for elimination of torque pulsa-
tion by zeroing the homopolar current oi . The comparison of 
the dqo and  transformations leads to the fact that only 
the  transformation decouples the currents. That is be-
cause in the dqo model the currents di  and qi depend on one 
another. Thus the o  transformation allows minimization of 
the copper losses by controlling the currents i  and i . A dis-
advantage of the dqo transformation is the highly nonlinear 
dqo model which complicates the control synthesis. There is 
no particular advantage of transforming the original model of 
the BDCM in rotating dqo and stationary  coordinates 
with respect to the signal periodicity. The three introduced 
strictly orientated state space models are specially designed 
for the application of advanced control theory differential 
geometric design approaches including multi-input multi-out-
put feedback linearization and adaptive systems design. The 
nonlinear state space models are simulated for illustration of 
their dynamic properties in the respective reference frames.  
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