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Abstract. This article presents strictly orientated state space models of permanent-magnet 
synchronous motors based on a two-phase dq mathematical model in rotating reference coor-
dinates synchronous with the electrical rotor speed. Park-Clarke transformations and the equi-
valent power principle are used. The state space models are specially suited for the application 
of advanced control differential geometric design approaches including multi-input multi-output 
feedback linearization and adaptive systems design. The models are simulated for illustration.  
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1. Introduction 
The interest in permanent-magnet motors during the 
last thirty years is due to the multiple advantages 
they offer. The permanent-magnet synchronous 
motors (PMSM) are part of this motor class. The 
PMSM have sinusoidal back electro-motive force 
and require sinusoidal stator currents to produce 
constant torque [8,9]. The difference between the 
conventional synchronous motor and PMSM is that 
PMSM has no brushes, commutator, and field 
winding. The excitation of these motors is achieved 
by strong rare-earth permanent magnets in the rotor 
providing very powerful excitation field without the 
need of excitation current and no electrical losses in 
the rotor. As a result they are very efficient 
energetically while generating comparatively high 
torque. The lack of brushes leads to longer life span 
of PMSM. These motors have maximal ratio 
between generated torque and motor inertia or total 
mass conditioned by the high power density of 
PMSM compared to induction motors or wound 
rotor synchronous motors. PMSM are preferred 
motors for high performance applications in 
robotics, industrial and aerospace implementations.  

The mathematical models of PMSM can be 
derived from the dq models of the conventional 
synchronous motor by removing the damper win-
dings equations and the excitation current dynamics 
[7]. Most frequently the three-phase PMSM are 
used in practice. The transformation of three-phase 

variables into two-phase coordinates, known also as 
Park-Clarke transformation, allows the two-phase 
mathematical model [7,5,4] to be utilized for 
simulation and investigation. The two-phase dq 
model is widely used for analysis and design with 
various types of control methods [10,5,1,2,3,6,4].  

The paper presents a derivation of a two-phase 
dq mathematical model for PMSM, reflection of the 
three-phase variables in two-phase dq coordinates 
by Park-Clarke transformation and application of 
the equivalent power principle. Equivalent replace-
ment scheme is proposed for the electrical processes 
taking place in the PMSM. The two possible state 
space models suitable for multi-variable feedback 
linearization control methods are proposed. These 
models are simulated in no load mode.  
 
2. PMSM mathematical modeling 
This section presents the derivation of a three-phase 
PMSM model based on the two-phase synchronous 
motor in dq coordinates. The stator of the three-
phase motor is represented by two windings only. 
The rotor magnets are modeled as a current source 
or flux linkage source concentrated along one of the 
axis. Figure 1 shows the PMSM in dq coordinates. 
The stator windings are shifted at 90 electrical 
degrees with respect to one another while the rotor 
winding is rotated with respect to the d-axis stator 
winding at the electrical angle. The motor model is 
derived with the following assumptions  
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♦ The stator windings are balanced with sinu-
soidal magnetomotive force (MMF). 
♦ The dependency of the inductance on the 
rotor position is sinusoidal.  
♦ The saturation and the parameters changes 
are neglected.  

The stator voltages along the q and d axes are 
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Figure 1. Two-phase PMSM 

determined as sums of voltage drops and flux 
linkages derivatives in the respective windings  
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where qR , dR  are the stator windings resistances, 

qsi , dsi  are the stator currents, and qsλ , dsλ  are the 

stator windings flux linkages. The latter can be 
writen as a sum of flux linkages due to their own 
excitation and mutual flux linkages resulting from 
other winding current and magnet sources. The 
rotor flux linkages have components on the q and d 
axes as they are assumed to be concentrated along 
the axis of the instantaneous rotor position. Thus, 
the stator windings flux linkages are written as  
 rafdsqdqsqqqs siniLiL θλ++=λ , 

 rafdsddqsdqds cosiLiL θλ++=λ , 

where rθ  is the instantaneous rotor position and 

afλ  is the rotor flux linkage. As the windings are 
balanced the resistances are equal and denoted as 

dqs R  R  R == . Then the equations of the stator 

voltages take the form  
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where qqL , ddL  are the windings self-inductances, 

qdL , dqL  are the mutual inductances due to the 

currents di  and qi , respectively. The flux linkages 

are functions of the rotor position. The magnets are 
aligned with the d-axis stator winding when 0r =θ . 
At that position the length of the flux path in the air 
is increased by the magnets’ thickness. The relative 
permeability of the magnets is almost equal to the 
relative permeability of the air, and therefore, the 
reluctance of the flux in this path is increased, 
hence, the winding inductance is decreased. This 
position corresponding to minimum inductance is 
denoted as dL . When 90r =θ  electrical degrees, 
the magnet flux path along the d-axis does not cross 
the magnets at all but crosses the iron of the rotor 
and the air gaps on both sides. This position 
corresponding to maximum inductance is denoted 
as qL . The windings are distributed to provide 

sinusoidal MMF. Hence, the self-inductances can be 
modeled as cosinusoidal functions of twice the rotor 
position according to the d-axis. Then the q and d 
windings self-inductances in terms of maximum 
windings inductances and the rotor position are 
 )2cos(LLL r21qq θ+= , (3) 

 )2cos(LLL r21dd θ−= , (4) 
where  

)LL(
2

1
L dq1 += , )LL(

2

1
L dq2 −= . 

The mutual inductance between the q and d 
windings is zero if the rotor is cylindrical and 
smooth. Because the saliency in the permanent-
magnet machines that have magnets placed inside 
the rotor, the d and q windings fluxes will be linked 
as the uneven reluctance provides path for the flux 
through the q-axis winding. When rθ  is zero or 90 
electrical degrees the mutual coupling is zero, but is 

maximum if o
r 45−=θ . Therefore assuming sinuso-

idal variation, the mutual inductances between the q 
and d axes windings are given by 
 )2cos(LLL r2dqqd θ−== . (5) 

In PMSM, dq LL >  always, because the permanent 

magnets in real machines always have an arc less 

than o180  with an interpolar space of iron that 
provides lower reluctance path for the flux.  

Substituting the self-inductances (3) and (4) and 
the mutual inductances (5) into the equations of the 
stator voltages (1) and (2) results in  

- 336 -



Copyright © 2011 by Technical University Sofia, branch Plovdiv, Plovdiv, BULGARIA. ISSN 1310 - 8271 
 

.
sin

cos

i

i

dt

d

2cosLL2sinL

2sinL2cosLL

i

i

2sin2cos

2cos2sin
L2

i

i
R

v

v

r

r
raf

ds

qs

r21r2

r2r21

ds

qs

rr

rr
2r

ds

qs
s

ds

qs

⎥
⎦

⎤
⎢
⎣

⎡
θ−
θ

ωλ+⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
θ−θ−

θ−θ+
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
θθ−
θ−θ−

ω+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

 

In surface mount magnet machines dq LL = , hence, 

0L2 = . Then, the stator voltages equations for 
surface mount magnet PMSM are 

⎥
⎦

⎤
⎢
⎣

⎡
θ−
θ

ωλ+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

r

r
raf

ds

qs

1

1

ds

qs
s

ds

qs

sin

cos

i

i

dt

d

L0

0L

i

i
R

v

v
 

The algebraic relation between the flux linkages and 
the currents is written in compact form as  
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In the salient pole PMSMs, the inductances are 
rotor position dependent. The solution of such 
equations is cumbersome for it requires a greater 
computational resource. If these dependencies are 
eliminated via a transformation then the equations 
will become manageable in the sense of equivalent 
circuit and phasor diagram building, and finding the 
steady-state equations. They are very important for 
investigation of the machine performance both in 
steady state and dynamic mode. 
 
2.1 Transformation to rotor reference frames 
The relationships between the q and d axes of the 

stationary reference frames, and the rq  and rd axes 
of the rotor reference frames are shown in figure 2.  
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Figure 2. Stationary and rotor reference frames 

The reference frames rotating at the rotor speed are 
hereafter referred to as rotor reference frames. The 
transformation leading to constant inductance is 
achieved by replacement of the real stator windings 
with fictitious stator windings which are placed 

along the rq  and rd  axes. After this operation the 
real and the fictitious stator windings have equal 

turns for each phase and should produce equivalent 
MMF. The actual stator MMF in any axis is the 
product of the number of turns and the current in the 
respective axis winding. It is equal to the MMF of 
the fictitious stator windings. It is established that 
the actual stator windings MMFs are obtained by 
projecting these fictitious MMFs on the q and d 
axes of the actual stator windings. This leads to 
cancellation of the number of turns from both sides 
of the q and d axes stator MMF equations, resulting 
in a relationship between the actual and the ficti-
tious stator currents. The relationship between the 
currents in the stationary reference frames and the 
currents in the rotor reference frames is  
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The speed of the rotor reference frames is 

 rr ω=θ& , 

where rθ&  is the time derivative of the electrical 
rotor angle in rad/s. Likewise the relationship 
between the voltages is  
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Substituting equations (6) and (7) into the equations 
of the stator voltages (1) and (2) results in the 
PMSM model in the rotor reference frames 
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where rω  is the electrical rotor speed.  
 
2.2 Phase coordinate transformations 
Usually three-phase PMSMs are used in practice 
but the above two-phase model derived is much 
more convenient. That is why a transformation  
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between the stationary three-phase variables of the 
real motor and the two phase variables of the model 
in rotor reference frames is needed to implement the 
two-phase model. This is the well known Park-
Clarke transformation. The transformation of the 
three-phase stator currents in two-phase rotor 
reference frames currents is  

 abc
r
abc

r
qd iTi = , 
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Likewise the transformation of the three-phase 
stator voltages is  
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The inverse transformation from two-phase rotor 
reference frames to stationary three-phase reference 
frames for the stator currents and voltages is  
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qd

1r
abcabc ][ vTv −= . (11) 

 
2.3 Power equivalence 
The input power of the three-phase motor has to be 
equal to the input power of the two-phase motor in 
order to have meaningful interpretation in the 
modeling, analysis and simulation. Such equality is 
presented in this section. The three-phase instanta-
neous input power is  

 cscsbsbdasasabc
T
abci ivivivivp ++==  (12) 

Its two-phase equvalence is derived by substitution 
of transformations (10) and (11) into equation (12)  
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2.4 Torques dynamic balance 
The electromagnetic torque is the most important 
output variable that influences the mechanical 
dynamics of the motor. It is derived from the 
matrix-vector equation of the machine by 
considering the input power and its components 
such as resistive losses, mechanical power, and the 
rate of change of the stored magnetic energy. In 
steady state the rate of change of the stored 
magnetic energy is zero, hence, the output power is 
the difference between the input power and the 
resistive losses. This condition is not fulfilled 
dynamically. The derivation of the electromagnetic 
torque is based on these peculiarities. The dynamic 
equations of PMSM in a vector-matrix form is  

 rdt

d
ω++= iGiLiRV , (13) 

where R  and L  are diagonal matrices of 
resistances and inductances, G  contains the 
remaining coefficients connected with the electrical 
rotor speed rω . The instantaneous input power is 
derived by multiplying equation (13) with the 
transpose of the current vector  

 ri
TTTT
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d
p ω++== iGiiLiiRiVi . 

The term iRiT  gives the stator and rotor resistive 

losses, dtdT iLi  is the rate of change of the stored 

magnetic energy, and the term r
T ωiGi  is the air 

gap power aP . It is known that the air gap power is 
the product of the mechanical rotor speed and the 
electromagnetic torque. Then  

 mraem PPT TT ω=ω==ω GiiiGi . 

where P is the number of pole pairs and mω  is the 
mechanical rotor speed. Canceling the speed and 
substituting the matrix G yields the electromagnetic 
torque as  
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The equation for the motor dynamics is  
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where LT  is the load torque, B is the friction 
coefficient, and J is the moment of inertia.  
 
2.5 Equivalent circuits 
The PMSM equivalent circuits of the q and d axes 
can be derived from the stator voltage equations (8) 
and are shown in figures 3a and 3b, respectively.  
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Figure. 3a. Dynamic stator q-axis equivalent circuit 
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Figure 3b. Dynamic stator d-axis equivalent circuit 
 
2.6 State space dynamic models 
The PMSM dynamic model according to equations 
(8) and (15) with the additional equation of the 
mechanical angle dtd mθ  are expressed as follows  

 m
m

dt

d
ω=

θ
 (16a) 
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Introducing the state space vector  

 TT ]i,i,,[]x,x,x,x[ r
ds

r
qsmm4321 ωθ==x , 

leads to the first state space model defined with 
respect to the stator currents  
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with control vector  
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The second state space model, defined with respect 
to the flux linkages is obtained from (16) by 
considering the relations  
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with the same control vector (18) in the form  
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Its coefficients read  
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3. Simulation results 
The first PMSM state space mathematical model 
(17) is simulated to check its working capacity. The 
simulation is carried out with zero initial conditions  

 TT ]0,0,0,0[]x,x,x,x[ 403020100 ==x , 
control vector  
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the friction considered in the model via the 4c  

coefficient, and load torque Nm10TL = . Figure 4 

shows the transient responses along 2x , 3x , 4x , 

1u , and 2u  for the current state space model 
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Figure 4. Dynamic response of current SS model 
while figure 5 displays the electromagnetic torque 
evolution. The two models differ only in the 
variables 3x , 4x  being currents in the first model 
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Figure 5. Electromagnetic torque response 
and flux linkages, displayed on figure 6, for the 
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Figure 6. Flux linkages dynamic response 

second state space model. The PMSM motor 
parameters used in the simulation are as follows  
 Ω= 4.1R , mH6.6Ld = , mH8.5Lq = ,  

 Vs1546.0f =λ , 3P = , 2kgm00176.0J = ,  

 Nms00038818.0B = . 
The two state space models derived are equivalent 
at considering the relations (19) between the flux 
linkages and the currents.  
 
4. Conclusions 
The paper has presented a two-phase dq mathema-
tical model derivation for PMSM, reflection of the 
three-phase variables in two-phase dq coordinates 
by Park-Clarke transformation and application of 
the equivalent power principle. The model derived 
is in rotating reference coordinates synchronous 
with the electrical rotor speed which leads to 
constant inductances of the stator windings. 
Equivalent replacement scheme is proposed for the 
electrical processes taking place in the PMSM. The 
electromagnetic torque expression is derived as 
function of the currents and the flux linkages. The 
two possible state space models are derived based 
on the two-phase dq PMSM mathematical model. 
The two introduced strictly orientated state space 
models are specially designed for the application of 
advanced control theory differential geometric 
design approaches including multi-input multi-
output feedback linearization and adaptive systems 
design. These models are simulated for illustrating 
their working capacity.  
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