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Abstract:  The paper presents a new approach for nonlinear adaptive state observer design for nonlinear systems in adaptive observer 
canonical form. The adaptive observer and parameter estimator presented in the paper are globally uniformly exponentially stable. This 
is achieved by introducing a data accumulation process for the unknown parameters of the objective nonlinear system. This process is 
exponentially stable conditioned by the defined parametric identifiability criterion. The performance specifications of the nonlinear 
adaptive observer, parameter estimator, and data accumulation dynamics introduced are controllable. The approach is applied to a 
single-link flexible joint robot arm for illustration.  
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INTRODUCTION  
 

 
 

One of the earlier results solving the problem for joint state 
and parameter estimation for nonlinear systems is presented in 
[1] by defining adaptive observer canonical form (AOCF) for 
nonlinear systems with time-varying parameters. The same 
idea is utilized in [3] where conditions for transformation of 
nonlinear systems with constant parameters into AOCF are 
given. The filtered transformation [5] transforms linearly 
reparameterized systems in nonlinear observer canonical form 
into AOCF. The AOCF structure allows asymptotic nonlinear 
adaptive observer design by applying the Mayer-Kalman-
Yakubovic lemma [9]. The asymptotic convergence of this 
observer is improved in [4] to exponential convergence with 
arbitrary rate. For systems with unmeasured but Lipschitz 
nonlinearities an adaptive observer design task is investigated 
in the works [17, 12] and solutions are given. All the above 
results are unified in [2] by defining a new more general 
AOCF. Recently the task for exact parameter estimation is 
solved in [10, 11, 18] but these approaches use unstable 
dynamics for some matrices. Exponential forgetting is utilized 
in [13, 14], and [15] to deal with this problem. A disadvantage 
of all methods introduced is the requirement for persistent 
excitation of the objective systems in order to achieve 
asymptotic state or parameter estimation which contradicts 
with the control goals.  
 
The paper considers a method for nonlinear adaptive observer 
design in adaptive observer canonical form. The adaptive 
observer and the parameter estimator are globally uniformly 
exponentially stable without the unacceptable requirement for 
persistency of excitation. The method is illustrated by a 
dynamic simulation. 
 

PROBLEM STATEMENT 
 
The general multi-input multi-output nonlinear systems 
considered are described by the equations  
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BILITY ANALYSIS 
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the following inequalities hold  
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APPLICATION OF THE APPROACH  
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SIMULATION AND SYSTEM TIME RESPONSES 
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Figure 1: Nonlinear adaptive state observer responses 
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Figure 2: Parameter estimator dynamics 

 
parametric identifiability property of the objective nonlinear
system. The necessary condition for exponential estimation of 
the state is the exponential parameter estimation which is 
confirmed by the simulation. The overall adaptive system time 
evolution has settling time 1.5s conditioned by the matrices 

, and  where bigger values 
lead to faster responses. 
 

CONCLUSIONS 
 
The paper has presented a new approach for globally 
exponentially stable nonlinear adaptive state observer design
in AOCF. umulation
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