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A study of hydrogen fuel impact on compression ignition

engine performance

Evgeni Dimitrov"”, Boyko Gigov', Spas Pantchev', Philip Michaylov', and Mihail Peychev'

ITechnical University — Sofia, Department of Combustion Engines, Automobile Engineering and Transport, Bulgaria

Abstract. In this paper, a dual-fuel compression ignition engine test bench is presented. In hydrogen-diesel
fuel co-combustion conditions, the engine parameters are determined — performance: effective torque,

effective power and mean effective pressure; fuel economy: fuel consumption and specific fuel

consumption; toxicity: carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons, and smoke
emissions (opacity). The impact of hydrogen-diesel fuel mass ratio on the performance, toxicity and

economy of the engine is studied by obtaining a series of hydrogen-diesel fuel ratio variation characteristics

at constant engine speed and load. Improvement of the economical parameters of the engine and reduction
of carbon dioxide concentration in exhaust gases is detected under operation with hydrogen gas fuel.
Significant reduction of the exhaust gases opacity is observed. It is not clear what the impact of the quantity
of hydrogen, injected in the engine, on the concentration of nitrogen oxides in the exhaust gases is.

1 Introduction

Today, internal combustion engines are thermal machines
which have reached a very high level of perfection — in
their design and technology, as in the process of their
working cycle. However, two constantly growing
problems are blocking their progress: a deepening energy
crisis and excessive environment pollution.

The development of the diesel engine is associated
with meeting the regulations for acceptable concentration
of toxic components, particle emissions and greenhouse
gases in the exhaust. It is widely known that the main
reason for particle emissions, mostly free carbon in soot
form, of a diesel engine is the non-homogenous nature of
the air-fuel mixture. In this relation, the higher level of
homogenization of the air-fuel mixture in the gas-diesel
cycle is a prerequisite for a fundamental improvement of
diesel engine emissions.

A gas-diesel cycle could be accomplished with many
gas fuels: liquefied petroleum gas — LPG (mixture of
propane and butane), compressed natural gas — CNG
(methane), hydrogen — H», etc. [1-4]. Hydrogen has a
number of properties [5,6], which make it one of the most
perspective alternative fuels for internal combustion
engines:

» the lower heating value of hydrogen is on average by 2,8
times higher than that of gasoline and diesel fuel;

* the necessary energy for the ignition of hydrogen is a bit
lower that the one necessary for hydrocarbon fuels;

* hydrogen has a very high rate of diffusion, due to which
a practically homogenous hydrogen-air mixture can be
achieved;

* hydrogen-air mixtures have very wide flammability
boundaries- from air-fuel ratio of « = 0,2 to air-fuel ratio
of a =10;

: Corresponding author: etzd@tu-sofia.bg

* no greenhouse gases are produced during hydrogen
combustion.

Two methods of achieving a gas-diesel cycle are
possible. With the first one, external mixture formation,
hydrogen is injected in the intake of the engine, where it
mixes with the air, entering the engine. The second
method consists of a direct injection of hydrogen in the
cylinder — internal mixture formation [7]. Apart from the
problems with hydrogen storage [8], and the lack of
charge stations for it, both methods of organizing a gas-
diesel cycle with hydrogen have to overcome a lot of
problems, related to their practical application in vehicles.

The design of new fuel systems, hydrogen flow
control systems and engine construction modification are
needed for the accomplishment of a hydrogen gas-diesel
cycle and internal mixture formation. Meanwhile, for the
execution of a gas-diesel cycle with external mixture
formation, an optimization of the mass fraction of
hydrogen in the total fuel mass, entering the engine, is
essential. With all parameters being constant, except for
the quantity of hydrogen, the increase of hydrogen mass
fraction leads to:

* improvement of engine economy [9,10];

reduction of the exhaust gases opacity and carbon
dioxide concentration [9,10];

reduction of the engine volumetric efficiency due to the
low density of hydrogen and the large volume of the
intake;

increase of the maximum in-cylinder pressure and
temperature values [11-13], due to the higher of the
flame front speed;

high pressure rise rate — dp/dp during combustion
[11,14];

an increase of nitrogen oxide and hydrocarbon
concentration in the exhaust gases [15].

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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2 Purpose of the research

In relation to the aforementioned facts the purpose of the
research is the quantitative assessment of the impact of the
hydrogen mass fraction (in percentage) in the total fuel
mass, entering a diesel engine, on its performance during
a gas-diesel cycle.

3 Experimental setup

A single cylinder, four stroke engine DV550 (Bulgaria)
with air cooling is used for the purposes of the study.
Several of the most important parameters of the engine
are: bore D = 91,5 mm; stroke S = 85 mm; compression
ratio ¢ = 17,5; direct injection; nominal power N, = 8§ kW
at engine speed n = 3000 min™.

A schematic of the experimental setup is shown in
Fig. 1. Engine 17 is connected to a direct current
dynamometer “SAK 28-15”, which is used to determine
engine performance. Hydrogen is injected in the engine
intake manifold under pressure py; = 0,65 bar, using a
quick-acting gas valve. The pressure is reduced from 150
bar in the storage cylinder 18 to nominal pressure using a
regulator valve 2. The hydrogen mass flow is regulated by
an electronic control system 7, which is a product of
cooperation between specialists of the “Department of
Electrical Motion Automation Systems” and the
“Department of Combustion Engines, Automobile
Engineering and Transport” of the Technical University —
Sofia. The system guarantees manual control (via
potentiometer) of the quick-acting gas valve, i.e. of
hydrogen quantity. The volume flow of the hydrogen
entering the engine is measured with a gas flow meter 3,
G4 type (Italy), connected between the regulator and the
quick-acting gas valve. The accuracy of the hydrogen
flow meter is 0,2 dm>. A pressure gauge (with an accuracy

of 5 kPa) and a type-K thermocouple connected to a
digital thermometer (1 °C accuracy) are mounted in a
separate chamber 4 leading to the gas flow meter. They
are used to determine the temperature and pressure of the
hydrogen entering the engine intake. The values of these
parameters are used to calculate mass hydrogen
consumption.

A volume flow meter 5, which operates by measuring
the time necessary for a known quantity of liquid fuel to
enter the engine, is used to determine the diesel fuel
consumption. The flow meter is developed by the
Department of Combustion Engines, Automobile
Engineering and Transport of the Technical University —
Sofia and has an accuracy of 0,2 cm?®.

The engine intake air flow is measured by a
differential water pressure gauge and an orifice connected
to an air receiver 12. The differential pressure gauge
readings have an accuracy of 1 mm water column.

The engine exhaust gas temperature is measured with
a type-K thermocouple and a digital thermometer with an
accuracy of 1 °C. The thermocouple is mounted on the
engine exhaust pipe, 100 mm away from the engine
exhaust manifold flange.

The engine exhaust emissions are determined using a
“Texa gasbox” gas analyser (Italy) 9. Apart from its other
parameters, the gas analyser detects the following toxic
components of the engine exhaust: carbon oxide CO
(0,01% accuracy); hydrocarbons HC (1 ppm accuracy);
nitrogen oxides NOy (5 ppm accuracy); carbon dioxide
CO; (0,1 % accuracy); oxygen O (0,1% accuracy).

The exhaust gas opacity R, is measured using the
“Hartridge” method with a “Tecnotest 495/1” smoke
meter (Italy) — 1 with an accuracy of 0,1%.

The engine combustion process parameters are
registered with an “AVL Indiset 620” indicating system
(Austria).

aaaaaaaa

@ Indiset 620
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Fig.1. Schematic of the experimental setup.
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4 Methodology of the study

The gas-diesel cycle requires the diesel engine to work
with two types of fuel in a certain ratio. Therefore, a mass
fraction coefficient for each fuel has to be defined. For
hydrogen and diesel fuel, these coefficients, K, and Kp,
respectively, equal:

Ky, = (BB—’;Z).mo, % (1)
Ky = (i—z) .100, % @)

where By is the hourly hydrogen consumption, kg/h;
Bp — the hourly diesel fuel consumption, kg/h;
By — the total hourly fuel consumption, kg/h.
The total fuel consumption can be obtained by the
equation:

By, = Bp + By, kg/h 3)

The effect of hydrogen on engine performance can be
most precisely evaluated by comparing the load
characteristics with diesel fuel with the load
characteristics with constant hydrogen mass fraction
(constant Ky»). Practically, this could be achieved by
comparing the engine characteristics at constant rpm,
constant Ky coefficient values and variable load.

Obtaining such characteristics directly, however, is
associated with significant difficulties such as quick-
acting measurement devices which can allow for
recording of the corresponding parameters in real time. In
this respect, the characteristics mentioned above were
generated in two stages. The first stage includes obtaining
regulation characteristics with variable hydrogen content.
These characteristics are obtained at constant speed
(n = const) and constant mean effective pressure
(pe = const, dynamometer force Fz = const) while varying
the quantity of diesel fuel and hydrogen. The results are
shown graphically as economical, ecological and other
parameters as a function of the mass fraction of hydrogen
in the total fuel mass, i.e. Ku>. The second stage includes
determining (from the corresponding regulation
characteristics) the engine parameters for a given speed
and Ku» coefficient. With the parameters calculated in this
way, the load characteristics for a certain speed and
hydrogen content are obtained.

Details related to the specific execution of the so
described methodology could be found in a published
paper of which some of the participants in the current
research are co-authors [16].

5 Results

As mentioned above, the experimental engine is a single-
cylinder engine. Such engines possess some distinctive
features related to their balancing, optimal counterweight
and flywheel dimensions [17]. Therefore, the
experimental study is conducted in engine modes typical
for the engine, without high-amplitude vibrations in the
mounting points.

Some of the experimental results are shown in Figures
2-12, where the following symbols are additionally used:
* b, — brake specific fuel consumption, g/kWh;

* 77 — brake thermal efficiency;

* 77, — volumetric efficiency;

* (dp/dp)max — maximum in-cylinder pressure rise rate,
bar/deg;

* Tgc — exhaust gas temperature, °C.

12 7— . ——— — 460
By, ke/h Engine - DV §50: b gV 120

1 11=2000 min™; p. = 0,227 MPa
08 . T I 380
N ~ | b L 340

: —~
O] 300
\ =0
04 . - 260
b, \\
0,2 » 220
Ky, %
0 . 180
0 10 20 30 40 50

Fig.2. Variation of the economy of a DV 550 diesel engine,
working on a gas-diesel cycle as a function of the mass fraction
of hydrogen.
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Fig.3. Variation of the nitrogen oxides concentration and the
exhaust gases opacity of a DV 550 diesel engine, working on a
gas-diesel cycle in function of the mass fraction of hydrogen.
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Fig.4. Variation of the hydrocarbons and carbon dioxide
concentration in the exhaust gases of a DV 550 diesel engine,
working on a gas-diesel cycle as a function of the mass fraction
of hydrogen.
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Fig.5. Variation of the brake thermal efficiency and the
volumetric efficiency of a DV 550 diesel engine, working on a
gas-diesel cycle as a function of the mass fraction of hydrogen.

Fig.8. Comparison of the exhaust gas opacity of a DV 550
diesel engine at engine speed of 2000 rpm and variable load,
running on: a diesel fuel and a gas-diesel cycle with hydrogen
(dual fuel mode/diesel-fuel mixture) — Kuz2 = 10%.
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Fig.6. Variation of the maximum in-cylinder pressure rise rate
in the cylinder of a DV 550 diesel engine, working on a gas-
diesel cycle as a function of the mass fraction of hydrogen.
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Fig.7. Comparison of the economical parameters of a DV 550
diesel engine at an engine speed of 2000 rpm and variable load,
running on: a diesel fuel and a gas-diesel cycle with hydrogen
(dual fuel mode/diesel-fuel mixture) — K2 = 10%.
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Fig.9. Comparison of the concentration of nitrogen oxides in
the exhaust gases of a DV 550 diesel engine at engine speed of
2000 rpm and variable load, running on: a diesel fuel and a
gas- diesel cycle with hydrogen (dual fuel mode/diesel-fuel
mixture) — Knz2 = 10%.
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Fig.10. Comparison of the concentration of carbon dioxide in
the exhaust gases of a DV 550 diesel engine at engine speed of
2000 rpm and variable load, running on: a diesel fuel and a
gas-diesel cycle with hydrogen (dual fuel mode/diesel-fuel
mixture) — Ku2 = 10%.
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Fig.11. Comparison of the concentration of hydrocarbons in
the exhaust gases of a DV 550 diesel engine at engine speed of
2000 rpm and variable load, running on: diesel fuel and gas-
diesel cycle with hydrogen (dual fuel mode/diesel-fuel
mixture) — Ku2 = 10%.
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Fig.12. Comparison of the exhaust gas temperature and the
maximum in-cylinder pressure rise rate of a diesel engine

DV 550 at 2000 rpm and variable load, running on: a diesel
fuel and gas-diesel cycle with hydrogen (dual fuel mode/diesel-
fuel mixture) — Knz2 = 10%.

The analysis of the experimental results obtained from
the examination of a DV 550 diesel engine running on
dual fuel mode showed the following:

1. A decrease in fuel consumption and brake specific
fuel consumption is observed in every engine mode with
the engine operating in a gas-diesel cycle as compared to
the operation on standard diesel fuel. From a quantitative
point of view, the percentage drop of B, and b. is
proportional to the Ku» coefficient. For example, fuel
consumption and brake specific fuel consumption of an
engine working on a gas-diesel cycle with Ku> = 41,08%
are 37% lower than those of an engine working on diesel
fuel. The improvement in the engine economical
parameters is due to the higher value of the lower heating
value of hydrogen as compared to that of the diesel fuel.

2. A considerable drop in exhaust gas opacity during
engine operation in a gas-diesel cycle with hydrogen is
present. In some engine modes, at loads up to 30% and
hydrogen mass fraction higher than 20% (K2 > 20%), the
exhaust gas opacity during engine operation on a gas-
diesel cycle with hydrogen is 6 to 7 times lower than the
opacity during engine operation on diesel fuel. For the
load characteristics at 2000 rpm, the exhaust gas opacity
in a gas-diesel cycle for K> = 10% is lower by 26,75% on
average than in a diesel fuel cycle under the same

conditions and lower by 41,42% on average for
K, = 14%. The decrease of the exhaust opacity of the
engine while operating in a gas-diesel cycle with
hydrogen is mainly due to the high level of
homogenization of the air-fuel mixture. The lower mass
fraction of carbon in the total fuel mass, however, has a
positive impact on opacity too.

3. The impact of the hydrogen mass fraction on the
concentration of nitrogen oxides in the engine exhaust
during operation on a gas-diesel cycle is not clear. With
engine working in a gas-diesel cycle with hydrogen mass
fraction higher than 25% (K2 > 25%) and load of up to
30%, an average reduction of 23,7% in the concentration of
nitrogen oxides is observed. In the range of variation of the
hydrogen mass fraction from 10 to 20% (K2 = 10% to
K = 20%) and engine working in a gas-diesel cycle with
a load of over 50%, an increase of the nitrogen oxides
concentration in the exhaust gases of 57,8% on average (as
compared to the operation on diesel fuel) is observed. The
impact of the hydrogen mass fraction on nitrogen oxides
concentration could be explained with the variation of the
engine exhaust temperature and the reduction of the total
air-fuel ratio during a gas-diesel cycle operation;

4. Carbon dioxide concentration in the engine exhaust
in a gas-diesel cycle with hydrogen decreases
significantly. The reduction amounts to 25,75% on
average in every engine mode. As mentioned above, the
reduced concentration of carbon dioxide in the engine
exhaust is due to the lower mass fraction of carbon in the
total fuel mass;

5. An increase of hydrocarbon concentration by 28,5%
on average is observed in all engine modes in gas-diesel
cycle, as compared to the operation on diesel fuel. The
hydrocarbon increase in the exhaust is due to the reduced
air-fuel ratio in @ gas-diesel cycle with hydrogen;

6. The engine exhaust gas temperature during a gas-
diesel cycle operation changes similarly to the
concentration of nitrogen oxides in the exhaust gases. The
differences in exhaust gas temperature of the engine
working on a gas-diesel cycle (for all values of the K
coefficient) and diesel fuel are insignificant for loads of
up to 30%. An increase of 20°C on average in the exhaust
gas temperature is observed with the engine working on a
gas-diesel cycle with Ku2 > 10% and with loads higher
than 50% as compared to the operation on diesel fuel;

7. The engine volumetric efficiency 7, decreases in a
gas-diesel cycle with hydrogen. The reduction is by up to
9% for loads higher than 50% and Ki, values higher than
15%. The decreased mass air-fuel mixture intake is an
expected phenomenon due to the low density of hydrogen
injected in the engine intake manifold. The impact of the
hydrogen mass entering the engine on its brake thermal
efficiency 7. is insignificant;

8. The diesel knock correlated to the maximum in
cylinder pressure rise rate (dp/dp)max also changes
insignificantly as function of the mass of hydrogen fed
into the engine. With an engine working on a gas-diesel
cycle and load up to 30%, irrespective of the K
coefficient values, a reduction of (dp/dp)max (reaching
30% for some modes) is observed. For loads higher than
50% and Ku, values over 15%, a gas-diesel cycle
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operation is associated with dangerously high maximum
in-cylinder pressure rise rate reaching 25 bar/deg.
Therefore, the load characteristics is shown for
Kz = 10%. The high values of (dp/dp)msx When operating
on a gas-diesel cycle at the abovementioned modes are
undoubtedly due to the very high speeds of the hydrogen
air-mixture flame front.

6 Conclusions

The analysis of the experimental study results leads to the
following conclusions:
» The realization of a gas-diesel cycle with hydrogen
results in an improvement of the economical parameters
of the engine in its whole working range;
The engine operation on a gas-diesel cycle guarantees
significant reduction of the exhaust gas opacity and
carbon dioxide concentration;
A decrease of the nitrogen oxide concentration and
decreased diesel knock is achieved during engine
operation on a gas-diesel cycle with hydrogen and loads
of up to 30%;
For hydrogen mass fraction higher than 10% and with
the engine working on a gas-diesel cycle at loads higher
than 50%, the diesel knock and the nitrogen oxide
concentration in the exhaust rise significantly;
The diesel engine operation on a gas-diesel cycle leads
to increased hydrocarbon concentration in the exhaust
and reduced volumetric efficiency for external mixture
formation.

In conclusion, we can state that the implementation of
a gas-diesel cycle with hydrogen and external mixture
formation is a promising method for improving the
ecological and economical parameters of the diesel
internal combustion engines. With effective and safe
hydrogen storage systems, this method can be adopted for
transport diesel engines as it does not require changes in
their design.
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