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A study of hydrogen fuel impact on compression ignition 
engine performance 

Evgeni Dimitrov1,*, Boyko Gigov1, Spas Pantchev1, Philip Michaylov1, and Mihail Peychev1 

1Technical University – Sofia, Department of Combustion Engines, Automobile Engineering and Transport, Bulgaria 

Abstract. In this paper, a dual-fuel compression ignition engine test bench is presented. In hydrogen-diesel 
fuel co-combustion conditions, the engine parameters are determined – performance: effective torque, 
effective power and mean effective pressure; fuel economy: fuel consumption and specific fuel 
consumption; toxicity: carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons, and smoke 
emissions (opacity). The impact of hydrogen-diesel fuel mass ratio on the performance, toxicity and 
economy of the engine is studied by obtaining a series of hydrogen-diesel fuel ratio variation characteristics 
at constant engine speed and load. Improvement of the economical parameters of the engine and reduction 
of carbon dioxide concentration in exhaust gases is detected under operation with hydrogen gas fuel. 
Significant reduction of the exhaust gases opacity is observed. It is not clear what the impact of the quantity 
of hydrogen, injected in the engine, on the concentration of nitrogen oxides in the exhaust gases is. 

1 Introduction 

Today, internal combustion engines are thermal machines 
which have reached a very high level of perfection – in 
their design and technology, as in the process of their 
working cycle. However, two constantly growing 
problems are blocking their progress: a deepening energy 
crisis and excessive environment pollution. 

The development of the diesel engine is associated 
with meeting the regulations for acceptable concentration 
of toxic components, particle emissions and greenhouse 
gases in the exhaust. It is widely known that the main 
reason for particle emissions, mostly free carbon in soot 
form, of a diesel engine is the non-homogenous nature of 
the air-fuel mixture. In this relation, the higher level of 
homogenization of the air-fuel mixture in the gas-diesel 
cycle is a prerequisite for a fundamental improvement of 
diesel engine emissions. 

A gas-diesel cycle could be accomplished with many 
gas fuels: liquefied petroleum gas – LPG (mixture of 
propane and butane), compressed natural gas – CNG 
(methane), hydrogen – H2, etc. [1-4]. Hydrogen has a 
number of properties [5,6], which make it one of the most 
perspective alternative fuels for internal combustion 
engines: 
• the lower heating value of hydrogen is on average by 2,8 

times higher than that of gasoline and diesel fuel; 
• the necessary energy for the ignition of hydrogen is a bit 

lower that the one necessary for hydrocarbon fuels; 
• hydrogen has a very high rate of diffusion, due to which 

a practically homogenous hydrogen-air mixture can be 
achieved; 

• hydrogen-air mixtures have very wide flammability 
boundaries- from air-fuel ratio of α = 0,2 to air-fuel ratio 
of α = 10; 

• no greenhouse gases are produced during hydrogen 
combustion. 

Two methods of achieving a gas-diesel cycle are 
possible. With the first one, external mixture formation, 
hydrogen is injected in the intake of the engine, where it 
mixes with the air, entering the engine. The second 
method consists of a direct injection of hydrogen in the 
cylinder – internal mixture formation [7]. Apart from the 
problems with hydrogen storage [8], and the lack of 
charge stations for it, both methods of organizing a gas-
diesel cycle with hydrogen have to overcome a lot of 
problems, related to their practical application in vehicles. 

The design of new fuel systems, hydrogen flow 
control systems and engine construction modification are 
needed for the accomplishment of a hydrogen gas-diesel 
cycle and internal mixture formation. Meanwhile, for the 
execution of a gas-diesel cycle with external mixture 
formation, an optimization of the mass fraction of 
hydrogen in the total fuel mass, entering the engine, is 
essential. With all parameters being constant, except for 
the quantity of hydrogen, the increase of hydrogen mass 
fraction leads to: 
• improvement of engine economy [9,10]; 
• reduction of the exhaust gases opacity and carbon 

dioxide concentration [9,10]; 
• reduction of the engine volumetric efficiency due to the 

low density of hydrogen and the large volume of the 
intake; 

• increase of the maximum in-cylinder pressure and 
temperature values [11-13], due to the higher of the 
flame front speed; 

• high pressure rise rate – dp/dφ during combustion 
[11,14]; 

• an increase of nitrogen oxide and hydrocarbon 
concentration in the exhaust gases [15]. 
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2 Purpose of the research 

In relation to the aforementioned facts the purpose of the 
research is the quantitative assessment of the impact of the 
hydrogen mass fraction (in percentage) in the total fuel 
mass, entering a diesel engine, on its performance during 
a gas-diesel cycle. 

3 Experimental setup 

A single cylinder, four stroke engine DV550 (Bulgaria) 
with air cooling is used for the purposes of the study. 
Several of the most important parameters of the engine 
are: bore D = 91,5 mm; stroke S = 85 mm; compression 
ratio ε = 17,5; direct injection; nominal power Ne = 8 kW 
at engine speed n = 3000 min-1. 

A schematic of the experimental setup is shown in  
Fig. 1. Engine 17 is connected to a direct current 
dynamometer “SAK 28-15”, which is used to determine 
engine performance. Hydrogen is injected in the engine 
intake manifold under pressure pH2 = 0,65 bar, using a 
quick-acting gas valve. The pressure is reduced from 150 
bar in the storage cylinder 18 to nominal pressure using a 
regulator valve 2. The hydrogen mass flow is regulated by 
an electronic control system 7, which is a product of 
cooperation between specialists of the “Department of 
Electrical Motion Automation Systems” and the 
“Department of Combustion Engines, Automobile 
Engineering and Transport” of the Technical University – 
Sofia. The system guarantees manual control (via 
potentiometer) of the quick-acting gas valve, i.e. of 
hydrogen quantity. The volume flow of the hydrogen 
entering the engine is measured with a gas flow meter 3, 
G4 type (Italy), connected between the regulator and the 
quick-acting gas valve. The accuracy of the hydrogen 
flow meter is 0,2 dm3. A pressure gauge (with an accuracy 

of 5 kPa) and a type-K thermocouple connected to a 
digital thermometer (1 °C accuracy) are mounted in a 
separate chamber 4 leading to the gas flow meter. They 
are used to determine the temperature and pressure of the 
hydrogen entering the engine intake. The values of these 
parameters are used to calculate mass hydrogen 
consumption. 

A volume flow meter 5, which operates by measuring 
the time necessary for a known quantity of liquid fuel to 
enter the engine, is used to determine the diesel fuel 
consumption. The flow meter is developed by the 
Department of Combustion Engines, Automobile 
Engineering and Transport of the Technical University – 
Sofia and has an accuracy of 0,2 cm3. 

The engine intake air flow is measured by a 
differential water pressure gauge and an orifice connected 
to an air receiver 12. The differential pressure gauge 
readings have an accuracy of 1 mm water column. 

The engine exhaust gas temperature is measured with 
a type-K thermocouple and a digital thermometer with an 
accuracy of 1 °C. The thermocouple is mounted on the 
engine exhaust pipe, 100 mm away from the engine 
exhaust manifold flange. 

The engine exhaust emissions are determined using a 
“Texa gasbox” gas analyser (Italy) 9. Apart from its other 
parameters, the gas analyser detects the following toxic 
components of the engine exhaust: carbon oxide CO 
(0,01% accuracy); hydrocarbons HC (1 ppm accuracy); 
nitrogen oxides NOx (5 ppm accuracy); carbon dioxide 
CO2 (0,1 % accuracy); oxygen O2 (0,1% accuracy). 

The exhaust gas opacity Rh is measured using the 
“Hartridge” method with a “Tecnotest 495/1” smoke 
meter (Italy) – 1 with an accuracy of 0,1%. 

The engine combustion process parameters are 
registered with an “AVL Indiset 620” indicating system 
(Austria).

 

Fig.1. Schematic of the experimental setup. 
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4 Methodology of the study 

The gas-diesel cycle requires the diesel engine to work 
with two types of fuel in a certain ratio. Therefore, a mass 
fraction coefficient for each fuel has to be defined. For 
hydrogen and diesel fuel, these coefficients, KH2 and KD, 
respectively, equal: 

ுమܭ  ൌ ቀ
஻ಹమ
஻೓
ቁ . 100, % (1) 

஽ܭ  ൌ ቀ
஻ವ
஻೓
ቁ . 100, % (2) 

where BH2 is the hourly hydrogen consumption, kg/h; 
BD – the hourly diesel fuel consumption, kg/h;  
BH – the total hourly fuel consumption, kg/h. 

The total fuel consumption can be obtained by the 
equation: 

௛ܤ  ൌ ஽ܤ ൅  ுమ, kg/h (3)ܤ

The effect of hydrogen on engine performance can be 
most precisely evaluated by comparing the load 
characteristics with diesel fuel with the load 
characteristics with constant hydrogen mass fraction 
(constant KH2). Practically, this could be achieved by 
comparing the engine characteristics at constant rpm, 
constant KH2 coefficient values and variable load. 

Obtaining such characteristics directly, however, is 
associated with significant difficulties such as quick-
acting measurement devices which can allow for 
recording of the corresponding parameters in real time. In 
this respect, the characteristics mentioned above were 
generated in two stages. The first stage includes obtaining 
regulation characteristics with variable hydrogen content. 
These characteristics are obtained at constant speed  
(n = const) and constant mean effective pressure  
(pe = const, dynamometer force FB = const) while varying 
the quantity of diesel fuel and hydrogen. The results are 
shown graphically as economical, ecological and other 
parameters as a function of the mass fraction of hydrogen 
in the total fuel mass, i.e. KH2. The second stage includes 
determining (from the corresponding regulation 
characteristics) the engine parameters for a given speed 
and KH2 coefficient. With the parameters calculated in this 
way, the load characteristics for a certain speed and 
hydrogen content are obtained. 

Details related to the specific execution of the so 
described methodology could be found in a published 
paper of which some of the participants in the current 
research are co-authors [16]. 

5 Results 

As mentioned above, the experimental engine is a single-
cylinder engine. Such engines possess some distinctive 
features related to their balancing, optimal counterweight 
and flywheel dimensions [17]. Therefore, the 
experimental study is conducted in engine modes typical 
for the engine, without high-amplitude vibrations in the 
mounting points. 

Some of the experimental results are shown in Figures 
2-12, where the following symbols are additionally used: 
• be – brake specific fuel consumption, g/kWh; 
• ηе – brake thermal efficiency; 
• ηv – volumetric efficiency; 
• (dp/dφ)max – maximum in-cylinder pressure rise rate, 

bar/deg; 
• TEG – exhaust gas temperature, °С. 

 

Fig.2. Variation of the economy of a DV 550 diesel engine, 
working on a gas-diesel cycle as a function of the mass fraction 
of hydrogen. 

 

Fig.3. Variation of the nitrogen oxides concentration and the 
exhaust gases opacity of a DV 550 diesel engine, working on a 
gas-diesel cycle in function of the mass fraction of hydrogen. 

 

Fig.4. Variation of the hydrocarbons and carbon dioxide 
concentration in the exhaust gases of a DV 550 diesel engine, 
working on a gas-diesel cycle as a function of the mass fraction 
of hydrogen. 

    
 

,MATEC Web of Conferences https://doi.org/10.1051/matecconf/20182234 0 (201 )80 340 01
BulTrans-2018

30 1 30

3



 

 

Fig.5. Variation of the brake thermal efficiency and the 
volumetric efficiency of a DV 550 diesel engine, working on a 
gas-diesel cycle as a function of the mass fraction of hydrogen. 

 

Fig.6. Variation of the maximum in-cylinder pressure rise rate 
in the cylinder of a DV 550 diesel engine, working on a gas-
diesel cycle as a function of the mass fraction of hydrogen. 

 

Fig.7. Comparison of the economical parameters of a DV 550 
diesel engine at an engine speed of 2000 rpm and variable load, 
running on: a diesel fuel and a gas-diesel cycle with hydrogen 
(dual fuel mode/diesel-fuel mixture) – КН2 = 10%. 

 

Fig.8. Comparison of the exhaust gas opacity of a DV 550 
diesel engine at engine speed of 2000 rpm and variable load, 
running on: a diesel fuel and a gas-diesel cycle with hydrogen 
(dual fuel mode/diesel-fuel mixture) – КН2 = 10%. 

 

Fig.9. Comparison of the concentration of nitrogen oxides in 
the exhaust gases of a DV 550 diesel engine at engine speed of 
2000 rpm and variable load, running on: a diesel fuel and a 
gas- diesel cycle with hydrogen (dual fuel mode/diesel-fuel 
mixture) – КН2 = 10%. 

 

Fig.10. Comparison of the concentration of carbon dioxide in 
the exhaust gases of a DV 550 diesel engine at engine speed of 
2000 rpm and variable load, running on: a diesel fuel and a 
gas-diesel cycle with hydrogen (dual fuel mode/diesel-fuel 
mixture) – КН2 = 10%. 
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Fig.11. Comparison of the concentration of hydrocarbons in 
the exhaust gases of a DV 550 diesel engine at engine speed of 
2000 rpm and variable load, running on: diesel fuel and gas-
diesel cycle with hydrogen (dual fuel mode/diesel-fuel 
mixture) – КН2 = 10%. 

 

Fig.12. Comparison of the exhaust gas temperature and the 
maximum in-cylinder pressure rise rate of a diesel engine  
DV 550 at 2000 rpm and variable load, running on: a diesel 
fuel and gas-diesel cycle with hydrogen (dual fuel mode/diesel-
fuel mixture) – КН2 = 10%. 

The analysis of the experimental results obtained from 
the examination of a DV 550 diesel engine running on 
dual fuel mode showed the following: 

1. A decrease in fuel consumption and brake specific 
fuel consumption is observed in every engine mode with 
the engine operating in a gas-diesel cycle as compared to 
the operation on standard diesel fuel. From a quantitative 
point of view, the percentage drop of Bh and be is 
proportional to the КН2 coefficient. For example, fuel 
consumption and brake specific fuel consumption of an 
engine working on a gas-diesel cycle with КН2 = 41,08% 
are 37% lower than those of an engine working on diesel 
fuel. The improvement in the engine economical 
parameters is due to the higher value of the lower heating 
value of hydrogen as compared to that of the diesel fuel. 

2. A considerable drop in exhaust gas opacity during 
engine operation in a gas-diesel cycle with hydrogen is 
present. In some engine modes, at loads up to 30% and 
hydrogen mass fraction higher than 20% (КН2 > 20%), the 
exhaust gas opacity during engine operation on a gas-
diesel cycle with hydrogen is 6 to 7 times lower than the 
opacity during engine operation on diesel fuel. For the 
load characteristics at 2000 rpm, the exhaust gas opacity 
in a gas-diesel cycle for КН2 = 10% is lower by 26,75% on 
average than in a diesel fuel cycle under the same 

conditions and lower by 41,42% on average for  
КН2 = 14%. The decrease of the exhaust opacity of the 
engine while operating in a gas-diesel cycle with 
hydrogen is mainly due to the high level of 
homogenization of the air-fuel mixture. The lower mass 
fraction of carbon in the total fuel mass, however, has a 
positive impact on opacity too. 

3. The impact of the hydrogen mass fraction on the 
concentration of nitrogen oxides in the engine exhaust 
during operation on a gas-diesel cycle is not clear. With 
engine working in a gas-diesel cycle with hydrogen mass 
fraction higher than 25% (КН2 > 25%) and load of up to 
30%, an average reduction of 23,7% in the concentration of 
nitrogen oxides is observed. In the range of variation of the 
hydrogen mass fraction from 10 to 20% (КН2 = 10% to  
КН2 = 20%) and engine working in a gas-diesel cycle with 
a load of over 50%, an increase of the nitrogen oxides 
concentration in the exhaust gases of 57,8% on average (as 
compared to the operation on diesel fuel) is observed. The 
impact of the hydrogen mass fraction on nitrogen oxides 
concentration could be explained with the variation of the 
engine exhaust temperature and the reduction of the total 
air-fuel ratio during a gas-diesel cycle operation; 

4. Carbon dioxide concentration in the engine exhaust 
in a gas-diesel cycle with hydrogen decreases 
significantly. The reduction amounts to 25,75% on 
average in every engine mode. As mentioned above, the 
reduced concentration of carbon dioxide in the engine 
exhaust is due to the lower mass fraction of carbon in the 
total fuel mass; 

5. An increase of hydrocarbon concentration by 28,5% 
on average is observed in all engine modes in gas-diesel 
cycle, as compared to the operation on diesel fuel. The 
hydrocarbon increase in the exhaust is due to the reduced 
air-fuel ratio in a gas-diesel cycle with hydrogen;  

6. The engine exhaust gas temperature during a gas-
diesel cycle operation changes similarly to the 
concentration of nitrogen oxides in the exhaust gases. The 
differences in exhaust gas temperature of the engine 
working on a gas-diesel cycle (for all values of the КН2 
coefficient) and diesel fuel are insignificant for loads of 
up to 30%. An increase of 20°C on average in the exhaust 
gas temperature is observed with the engine working on a 
gas-diesel cycle with КН2 > 10% and with loads higher 
than 50% as compared to the operation on diesel fuel; 

7. The engine volumetric efficiency ηv decreases in a 
gas-diesel cycle with hydrogen. The reduction is by up to 
9% for loads higher than 50% and КН2 values higher than 
15%. The decreased mass air-fuel mixture intake is an 
expected phenomenon due to the low density of hydrogen 
injected in the engine intake manifold. The impact of the 
hydrogen mass entering the engine on its brake thermal 
efficiency ηе is insignificant; 

8. The diesel knock correlated to the maximum in 
cylinder pressure rise rate (dp/dφ)max also changes 
insignificantly as function of the mass of hydrogen fed 
into the engine. With an engine working on a gas-diesel 
cycle and load up to 30%, irrespective of the КН2 
coefficient values, a reduction of (dp/dφ)max (reaching 
30% for some modes) is observed. For loads higher than 
50% and КН2 values over 15%, a gas-diesel cycle 
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operation is associated with dangerously high maximum 
in-cylinder pressure rise rate reaching 25 bar/deg. 
Therefore, the load characteristics is shown for  
КН2 = 10%. The high values of (dp/dφ)max when operating 
on a gas-diesel cycle at the abovementioned modes are 
undoubtedly due to the very high speeds of the hydrogen 
air-mixture flame front. 

6 Conclusions  

The analysis of the experimental study results leads to the 
following conclusions: 
• The realization of a gas-diesel cycle with hydrogen 

results in an improvement of the economical parameters 
of the engine in its whole working range; 

• The engine operation on a gas-diesel cycle guarantees 
significant reduction of the exhaust gas opacity and 
carbon dioxide concentration; 

• A decrease of the nitrogen oxide concentration and 
decreased diesel knock is achieved during engine 
operation on a gas-diesel cycle with hydrogen and loads 
of up to 30%; 

• For hydrogen mass fraction higher than 10% and with 
the engine working on a gas-diesel cycle at loads higher 
than 50%, the diesel knock and the nitrogen oxide 
concentration in the exhaust rise significantly;  

• The diesel engine operation on a gas-diesel cycle leads 
to increased hydrocarbon concentration in the exhaust 
and reduced volumetric efficiency for external mixture 
formation. 

In conclusion, we can state that the implementation of 
a gas-diesel cycle with hydrogen and external mixture 
formation is a promising method for improving the 
ecological and economical parameters of the diesel 
internal combustion engines. With effective and safe 
hydrogen storage systems, this method can be adopted for 
transport diesel engines as it does not require changes in 
their design. 
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