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TEPMHUYEH AHAJIN3 HA IBPBECUHA OT MEKCUKAHCKH BAJI
KEJADBP (CUPRESSUS LUSITANICA) OTHE3AILIUTEHA YPE3
INJTASMEHO-ITIOAIIOMOI'HATA UMIIPETHAIIUA CbC 3ABABUTEJIN
HA I'OPEHETO

Junasna I'ocnoaunosa, UBaisiio UBanos, Ilersp lunes, JIrocuen BeseBa

Pe3tome: [Inazmeno noonomocnamama ocHezawuma ype3 3a0agumenu Ha 2opeHemo
Ha 0bpPB0, ObpEeHU U30enusi U Yerylo3HU MAmepuail e 3amMucieHa u papabomena
Kamo pe3yimam om nosaeama u pazeumuemo Ha niazmeHo noOnoMocHama KanuiapHa
umnpeznayus. Ilpedwecmeaujomo KanuusipHama UMNpecHayus NAa3mMeHo XUMUYHO
aKmusupane Ha NOBbLPXHOCMIMA NPOMEHS. CoUeCMBEHO eleKMPULeCKAma, XUMUYHAMA
U KanuusipHama akmueHOCm HA NOPecmama NO8bPXHOCH, KOemo Om C80s. CMpaHa €
NPUYUHA 3a NO00OPs6anHe HA OCHOBHU XAPAKMEPUCTUKU HA UMNPECHAYUOHHUS NPO-
yec. Tepmuunusam ananus e u3noa36an N0 eOUH HO8 HAYUH, 34 04 ce PA3KpUe GIUHU-
emo Ha NIA3MeHO NOONOMOSHAMAMA KANUIAPHA UMAPESHAYUSL BbPXY OHe3auumamad
Ha Ovpsecuna om Mekcuxancku 0sn keovp (Cupressus Lusitanica).

Kntouoeu oymu: ouenexmpuuen 6apuepen paspso, nida3meHo noOnoOMOSHAMA Kanu-
JIAIPHA UMApecHayus, 3a0a8umei Ha 20peHemo, ObPEeCUHa om Keovp.

INVESTIGATION ON PLASMA-AIDED FLAME RETARDATION OF
MEXICAN WHITE CEDAR (CUPRESSUS LUSITANICA) WOOD BY
THERMAL ANALYSIS

Dilyana Gospodinova, Ivaylo Ivanov, Peter Dineff, Lucien Veleva

Abstract: The plasma aided flame retardation of wood, wooden products and cellulo-
sic fibrous materials has been conceived and developed as a result of plasma aided
process of capillary impregnation. The plasma-chemical surface pre-treatment sub-
stantially alters its electrical, chemical and capillary activity, thus improving some
Impregnation process basic characteristics, such as penetration depth, solution
spreading and adsorption speed, adsorbed solution capacity. Thermal analysis has
been used to reveal the impact of a new phosphor and nitrogen containing flame re-
tardant and plasma-aided capillary impregnation on flame retardation of Mexican
white cedar wood. This study has been developed as part of a large investigation on
plasma activated (functionalized) wood surface and flame retardant treated wood.
Keywords: dielectric barrier discharge, plasma aided capillary impregnation, flame
retardants, Mexican white cedar (Cupressus Lusitanica) wood.
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1. Introduction

The plasma aided flame retardation of wood, wooden products and cellulosic fibrous
materials has been conceived and developed as a result of an original plasma aided
process of capillary impregnation. The ability of the wood grain to adsorb water solu-
tion is of critical importance for the capillary impregnation of the wood, [1, 2, 3].

It is well known that heat treatment (drying) and machining reduces the chemical ac-
tivity and wood wettability by modifying its water-reactive matrix in different ways.
It was found earlier that the cold plasma pre-treatment of hard wood like cherry and
oak improves such technological characteristics of the capillary impregnation process
as solution spreading and flame retardant adsorption speed and quantity. The plasma-
chemical surface pre-treatment modifies significantly the ionic and chemical activity
of the wood surface as well as its capillary activity. As a result of that the technologi-
cal characteristics of the capillary impregnation process were improved. This allows
using the plasma aided retardation as a finishing process and applying it "in line" and
"off line". A system of plasma device and applicators has been created to produce cold
technological plasma through dielectric barrier discharge (DBD) at atmospheric pres-
sure and room temperature, [1, 2, 3, 4 and 5].

Mexican white cedar, Cedar of Goa, Mexican cypress or White cedar (Scientific
name: Cupressus Lusitanica) is a species of cypress native to Mexico and Central
America (Guatemala, El Salvador and Honduras). Cedro Blanco, Cedro de San Juan,
Cypress Mexicano, Cypress de Portugal, Cypress Lusitanico and Teotlate are distinc-
tive names used in Mexico. It has also been introduced to Belize, Costa Rica and Nic-
aragua. It has been planted widely for commercial production: at high altitudes in Co-
lombia, Bolivia and South Africa, and near sea level in New Zealand where it is fully
naturalized.

White cedar is widely used for production of construction lumber, poles/posts, turned
objects and musical instruments. But due to its fine-texture and surface inactivation it
is difficult to apply flame retardants through capillary impregnation, [6, 7].

The objective of this paper was to study the effect of plasma pre-treatment on the
wood surface functionalization as well as the effect of different surfactants on the ion
activity of the new impregnation solution, both aiming to improve the White cedar
wood flame retardation.

Some experimental results on White cedar thermal degradation (pyrolysis) depending
on wood flame retardation under different conditions monitored by some methods of
commonly used thermal analysis (thermogravimetric analysis, TGA; differential
thermal analysis, DTA; and differential scanning calorimetry, DSC) are presented

here: i - plasma-aided capillary impregnation for wood flame retardency improve-
ment; ii - new phosphorous and nitrogen containing flame retardant impregnation so-
lution for plasma-aided retardation; iii - conditioning of the applying impregnation so-

lution with surfactants and spreaders.
2. Experimental investigation

White cedar soft wood (Cupressus Lusitanica, Yucatan, Mexico) with average dried
weight: 470 kg/m®; basic specific gravity (basic: 12 % moisture content): 40/47;
Janka hardness: 2 240 N; rupture strength or modulus of rupture:76.40 MPa; elastic
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strength or modulus of elasticity: 8.72 MPa; radial or R-shrinkage: 2.8 %; tangential
or T-shrinkage: 5.9 %, and volumetric shrinkage: 8.1 %; T/R ratio: 2.1; and moisture
content of 8.3 % was used in this investigation, Fig.1

Thermal analysis test samples were made from White cedar heartwood

b)
Fig.1. Flatsawn (a), quartersawn (c) surfaces of White Cedar wood sample, and an end grain view
(b) of White Cedar (x 10).

On the basis of prior art, as well as on our own former experience in plasma aided
impregnation, [3, 5], an oxidative (nitrogen oxides, NOy) surface plasma pre-treatment
has been applied on the test samples for 60 sec in a non-equilibrium cold plasma of
dielectric barrier air discharge (DBD) at atmospheric pressure, industrial frequency
(50 Hz) and 18 kV (RMS) or 25.4 kV (PV).

The DBD-technological plasma system consisted of coplanar shaped rectangular elec-
trodes with one glass barrier (3 mm thick) closely arranged to the grounded electrode,
with 6 mm operating distance between the high voltage electrode and the barrier, Fig
la. The DBD was assured by a low frequency (50 Hz) voltage generator. The wood
samples were disposed in operating volume and were treated for one minute (60 sec)
under chosen operational regime, Fig.1b.

A halogen-free, phosphorus and nitrogen containing flame retardant has been used in
this investigation as a 30 wt. % water solution. A new flame retardant product
(PhNFR) based on ortho-phosphorous acid, urea and ammonia has been produced and
studied. The impregnating flame retardant water solution (PhFRIS, dry substance of
30 wt. %; phosphorus content of about 13 wt. %, pH = 78 and density of 1.15 g/cm®)
was based on it. The replacement of the halogen containing flame retardants by halo-
gen-free ones has been imposed by the toxicity of the halogens, [6].

The non-equilibrium air plasma treatment gives good results increasing the chemical,
anionic and capillary surface activities. Anionic surfactants (AS, “Aniticrystallin A“,
Chimatech, Ltd., Bulgaria) in quantity of 5 vol. %, and silicone super spreader (SSP,
Y-17113, Momentive Performance Materials GmbH & Co. KG, Germany) in quantity
of 0.1 vol. %, as well as their combinations, have been used to control the ion activity
of the flame retardant impregnation water solution after surface plasma pre-treatment.
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The capillary impregnation has been applied on bare (for comparison) and plasma
pre-treated White cedar wood samples at atmospheric pressure by spraying the corre-
sponding flame retardant solution (390 ml.m™ or 390 cm>.m™).

e 45
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Fig.2. Dielectric barrier air discharge (DBD) in asymmetric coplanar electrode system with one (al-
kali glass) barrier (a), technological discharge characteristic "pa - Urms™, and pick and choose re-
gime (b) of plasma pre-treatment at industrial frequency and 18 kV (RMS).

Thermal analysis — thermogravimetric analysis (TGA), differential scanning calorim-
etry (DSC), and differential thermal analysis (DTA), have been performed in air at a
heating rate of 10 °C/min within the temperature range of 25+1 000°C using Perkins-
Elmer equipment, [8, 9].
3. Experimental results and discussion
Flame-retardency effect on heat release and mass losses

The studied plasma-aided capillary impregnation was based on both: plasma pre-
treatment of the wood surface, Fig.2; and flame retardant impregnating solution with
ion activity optimization, expecting that an increase of the wood capillary activity and
the impregnating solution adsorption speed and capacity would allow good enough
flame retardant performance of porous wood surface [1, 2, and 5].

The DBD-surface activation effects or the expected surface reorganization and alter-
nation of the chemical composition as a result of the plasma pre-treatment as well as
the impregnation solution conditioning, have been directly monitored by the thermal
behaviour of bare and flame retarded White cedar wood — by TGA and DSC-analyzes,
Fig.5,6and 7.

The pyrolysis characteristics of White cedar were investigated using a thermogravi-
metric (TGA) analyzer with differential scanning calorimetry (DSC) detector and a
pack bed, Fig. 3.

In thermal analysis, the pyrolysis of hemicellulose and cellulose occurs quickly, with
main weight loss of hemicellulose at 220+315 °C and that of cellulose at
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by TGA

tanica, Yucatan, Mexico) samples in air (heating rate: 10

identification (1, 2, 3, 4 and 5): a - by DTA

spectrum; ¢ - by DSC-spectrum.

b

315+400 °C. However, lignin is more difficult to decompose and its mass loss hap-

spectrum;

pens in a temperature range from 160 to 900 °C). Well known studies show that wood
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Phosphorous and Nitrogen Containing Flame Retardant (PhNFR)
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Fig.4. Thermal analysis - TGA, DSC and DTA-spectra of bare phosphorous and nitrogen containing
flame retardant (PhNFR) dried sample in air (heating rate: 10 °C per minute) in the temperature area
of flaming and glowing wood pyrolysis stages (A-B-C): a - TGA-spectrum; b - DSC-spectrum; ¢ -
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DTA-spectrum; d - specific heat (by unit weight of FR-sample) released during the interval of wood
ignition (O-A), flaming (A-B) and glowing (B-C).

Mexican White Cedar Wood Sample _— Temperature T, °C
e O | | | |
§ 0o 100 200 300 400 500
; o Fo—— : | ‘ ‘
g % ‘ a)
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Fig.5. Thermal TGA-analysis: flame retardency effect illustrated by the difference between relative
mass losses demonstrated by bare (Ced-K) White cedar (Cupressus Lusitanica, Yucatan, Mexico)
samples, flame retarded (Ced-K-FR) samples (a) and plasma-flame retarded wood (Ced-18-FR;
Ced-18-FR-A5-S) samples (b) during air flow pyrolysis in the temperature interval up to 500 °C
shown by DSC spectra (heating rate: 10 °C per minute).

CD - temperature area of protective carbon layer formation.

pyrolysis can be divided into four stages: moisture evolution (dehydration), hemicel-
lulose decomposition, cellulose decomposition and lignin decomposition [10, 11].
The pyrolysis characteristics of bare White cedar wood are shown in Fig. 3 - the fifth
pyrolysis stages or temperature regimes with their critical points (stage transitions):
S1 - desorption, dehydratation; S2 - smoldering, ignition; S3 - flaming; S4 - glowing,
charing; S5 - slow extinction with ash forming.
The pyrolysis characteristics of the new synthesized dried phosphor and nitrogen con-
taining flame retardant (PhNFR) without surfactant and super spreader are shown in
Fig. 4. The temperature area of protective carbon layer formation was found out be-
tween 158 and 286 °C, Fig.5.

The ignition point (IP) of White cedar wood was found at 256 °C, Fig.3.
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Mexican White Cedar Wood Sample
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Fig.6. Thermal DSC-analysis: flame retardency effect illustrated by the difference between heat
flows demonstrated by bare (Ced-K) White cedar (Cupressus Lusitanica, Yucatan, Mexico) sam-
ples, flame retarded (Ced-K-FR) wood samples (a) and plasma-flame retarded wood (Ced-18-FR;

Ced-18-FR-A5-S) samples (b) during air flow pyrolysis in the temperature interval up to 500 °C

shown by DSC spectra (heating rate: 10 °C per minute).

PC - protective temperature area with suppressed wood ignition, flaming and glowing.

4. Conclusion

The application of thermal analysis (TGA, DTA, and DSC) allows evaluating the
White cedar wood decomposition (pyrolysis) under the influence of heat by setting
pyrolysis stage temperature ranges and hemi-cellulose, cellulose and lignin character-
istic temperature peaks.

Thermal analysis helps reveal and illustrate the impact of the newly produced phos-
phor and nitrogen containing flame retardant on White cedar wood behaviour (pyroly-
sis). It significantly reduces the heat release within the range of 84+446 (565) °C by
suppressing the flaming and glowing combustion of wood and decreases considerably
the mass loss. This flame-retardant chemicals shift the White cedar wood thermal deg-
radation to the low temperature pathway of non-combustible gases and greater pro-
portion of remaining wood as char residue - the transition to glowing combustion is
already taking place and the remaining char residue is 54.5 wt. % (against 20 wt. %
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for bare White cedar); at the temperature of 465 °C the remaining char residue is 43.9
wt. % (against 1.2 wt. % for bare White cedar), Fig.5 and 7.

Thermal analysis enables studying the plasma aided capillary impregnation technol-
ogy using water solution containing phosphorus flame retardant and its impact on
White cedar wood plasma aided flame retardency. The experimental study of chemi-
cal, ion and capillary activity change of the White cedar wood surface using selected
surfactant and spreader shows that it has no substantial contribution to the plasma aid-
ed flame retardency. The change of the impregnation solution ionic and capillary ac-
tivity (PhFRIS) resulting from the anionic surfactant and silicon spreader application
accelerates, increases the amount of the applied flame retardant and the depth of the
capillary impregnation, but does not alter substantially the efficiency, neither in terms
of heat release, nor in terms of mass losses, Fig.5, 6 and 7.

Mexican White Cedar Wood Sample
25

f
Plasma Aided Flame Retarded Cedar a)
(Ced-18-FR-A5-S) ]

V Cedar - Control Sample

(Ced-K)

20

Specific Heat, MJ/t

15

10

565

0 200 400 600 800 1000
— Temperature T, °C

25

20

b)

Specific Heat, MJ/t

15 1T/

I Flame Retarded Cedar

(Ced-18-FR-A5-S) (Ced-K-FR)

10 565

0 200 400 600 800 1000
> Temperature T, °C

Fig.7. Thermal analysis: integral flame retardency effect illustrated by the difference between re-
leased specific (per unit mass of sample) heat demonstrated by bare (Ced-K) White cedar (Cupres-
sus Lusitanica, Yucatan, Mexico) samples, flame retarded (Ced-K-FR) samples (a) and plasma-
flame retarded wood (Ced-18-FR; Ced-18-FR-A5-S) samples (b) during air flow pyrolysis in the
temperature interval up to 1 000 °C takes by TGA and DSC spectra (heating rate: 10 °C per minute).

P-EP - protective temperature area with suppressed wood ignition, flaming, glowing and af-
ter glowing char degradation.
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