

The Gas Institute of National Academy of Sciences of Ukraine

The Third Central European Symposium on Plasma Chemistry

August 23 – 27, 2009

Kyiv

UKRAINE

Book of Abstracts

National Taras Shevchenko University of Kyiv Radio Physics Faculty Kyiv, UKRAINE

The Gas Institute of National Academy of Sciences of Ukraine

The Third Central European Symposium on Plasma Chemistry

August 23 – 27, 2009

Kyiv

UKRAINE

Book of Abstracts

National Taras Shevchenko University of Kyiv Radio Physics Faculty Kyiv, UKRAINE

HONORARY COMMITTEE

Chairman –Prof. Valerij Grygoruk (Vice-chancellor of Kyiv National Taras Shevchenko
University, Ukraine)
Prof. Igor Krivtsun (Deputy Director for Scientific Research of the E.O. Paton
Electric Welding Institute the NASU, Ukraine)

SYMPOSIUM CHAIRS

Prof. Valeriy Chernyak	(Radiophysical Faculty of Kyiv National Taras Shevchenko University, Ukraine)
Prof. Jerzy Mizeraczyk	(The Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid Flow Machinery, Gdańsk, Poland)
Prof. Victor Zhovtyanskij	(The Gas Institute of the NASU, Ukraine)

INTERNATIONAL ADVISORY COMMITTEE

Prof. Mirko Cernak	(Comenius University Faculty of Mathematics, Physics and Informatics, Slovakia)				
Prof. Nicolas Gherardi	(University of Toulouse, CNRS-UPS-INP, France)				
Prof. Holger Kersten	(Institute for Experimental and Applied Physics, University of Kiel, Germany)				
Dr. Milorad Kuraica	(University of Belgrade Faculty of Physics, Serbia)				
Prof. Matti Laan	(Gas Discharge Laboratory of the Institute of Experimental Physics and Technology, University of Tartu, Estonia)				
Prof. Yurij Lebedev	(Institute of Petrochemical Synthesis Russian Academy of Science, Russia)				
Prof. Christophe Leys	(Ghent University, Department of Applied Physics, Belgium)				
Prof. Nigel Mason	(The Open University Physics and Astronomy, United Kingdom)				
Prof. Cristina Paradisi	(Department of Chemical Sciences, University of Padova Department of Chemical Science, Italy)				
Prof. Eddie van Veldhu	lizen (Eindhoven University of Technology, Department of Physics, Netherlands)				
Prof. Klaus-Dieter Weltm	ann (INP Greifswald Leibniz-Institute for Plasma Science and Technology, Germany)				
Prof. Sergej Zhdanok	(A.V. Luikov Heat and Mass Transfer Institute, Belarus)				
	NATIONAL SCIENTIFIC COMMITTEE				
Prof. Mykola Azarenkov	(V.N. Karazin Kharkiv National University, Ukraine)				
Prof. Igor Anisimov	(Kyiv National Taras Shevchenko University)				
Prof. Yurij Borisov	(E.O. Paton Electric Welding Institute the NASU)				
Prof. Valeriy Chernyak	(Kyiv National Taras Shevchenko University)				

I.Mechnikov)

University) (IPP NSC KIPT)

(School of Physics and Technology, Kharkiv National University)

(Thermal physics department of Odessa National university named by

(Department of Physical Technologies of Karazin Kharkiv National

(Department of Gas Electronics, Institute of Physics of NASU)

Prof. Volodymyr Muratov (Department of Plasma Physics of Karazin Kharkiv National University)

(Kyiv Institute of Nuclear Research, NASU)

Prof. Igor Denysenko

Prof. Grigoriy Dragan

Dr. Volodymyr Farenik

Prof. Aleksey Goncharov

Dr. Konstantin Shamrai

Dr. Igor Garkusha

Prof. Anatolij Shchedrin	(Department of Gas Electronics, Institute of Physics of NASU)
Dr. Valerij Taran	(IPP NSC KIPT)
Prof. Vladimir Tereshin	(Institute of Plasma Physics, National Science Center Kharkov Institute
	of Physics and Technology IPP NSC KIPT)

LOCAL ORGANIZING COMMITTEE

Prof. Valeriy Chernyak (Kyiv National Taras Shevchenko University) – Chairman
Dr. Eugen Martysh (Kyiv National Taras Shevchenko University) – Scientific Secretary
Mrs. Irina Prysiazhnevych (Kyiv National Taras Shevchenko University)–Symposium Secretary
Mr. Vitaliy Yukhymenko (Kyiv National Taras Shevchenko University)–Symposium Secretary
Dr. Vladimir Korzhyk (E.O. Paton Electric Welding Institute of NASU)
Dr. Alexandr Kravchenko (Kyiv National Taras Shevchenko University)
Dr. Yurij Lelyukh (The Gas Institute, NASU)
Mrs. Tamara Lisitchenko (Kyiv National Taras Shevchenko University)
Dr. Anatolij Veklych (Kyiv National Taras Shevchenko University)
Ms. Yulia Veremii (Kyiv National Taras Shevchenko University)

SPONSORS

Central European Initiative CEI National Taras Shevchenko University of Kyiv Ukraine Ministry of Science and Education

PATRONAGE

Kyiv National Taras Shevchenko University, Ukraine E.O. Paton Electric Welding Institute the National Academy of Sciences of Ukraine Gas Institute of National Academy of Sciences of Ukraine

Contact Address

Taras Shevchenko National University of Kyiv Radio Physics Faculty Prospect Glushkova 2/5 03022 Kyiv Ukraine

Phone: (+38044) 526 05 81 Fax: (+38044) 521 35 90

E-mail: <u>3cespc@ukr.net</u> Website: <u>www.cespc.univ.kiev.ua</u>

Table of Contents

Invited lectures

т 4		
Inv.1	JS. Chang, V. Lakhian, D. Brocilo, G.D. Harvel, D. W. Ewing, M. Watanabe,	
	H. Matsubara, H. Hirata, S. Matsumoto, P. Fanson	
	FUEL REFORMING CHARACTERISTICS OF ELECTROHYDRODYNAMIC	
	ATOMIZATION- FLOW STABILIZED PULSED CORONA DISCHARGE	13
	RADICAL SHOWER SYSTEMS	15
Inv.2	P. Bruggeman, D.C. Schram, M.A. González, Y. Aranda Gonzalvo, F. Iza,	
	M.G. Kong, C. Leys	
	OPTICAL EMISSION SPECTROSCOPY OF PLASMAS IN AND IN CONTACT	15
	WITH LIQUIDS	13
Inv.3	M. Aints, M. Kiisk, M. Laan <u>,</u> P. Paris	
	LASER INDUCED BREAKDOWN SPECTROSCOPY FOR SURFACE STUDIES	17
Inv.4	M. Bai, W. Chen, Z. Zhang, X. Bai	
	PLASMA CONVERSION OF CH ₄ INTO LIQUID PRODUCTS, H ₂ AND NH ₃	
	BASED ON STRONG ELECTRIC-FIELD IONIZATION DISCHARGE AT	
	ENVIRONMENTALLY FRIENDLY CONDITION	19
Inv.5	M. Černák, D. Kováčik, A. Zahoranová, J. Kubincová	
	IN-LINE PLASMA TREATMENT OF TEXTILE MATERIALS	21
Inv.6	Yu.Akishev, M.Grushin, N.Dyatko, A.Napartovich, N.Trushkin	
	PHYSICS AND CHEMISTRY OF NON-THERMEL PLASMA RELEVANT TO	
	POLYMER SURFACE TREATMENT AT ATMOSPHERIC PRESSURE	23
Inv.7	N. Gherardi, L. Maëchler, I. Enache, N. Naudé, H. Caquineau, F. Massines	
	SIO _X CONTAINING LAYERS DEPOSITED BY ATMOSPHERIC PRESSURE	
	TOWNSEND DISCHARGE AND ATMOSPHERIC PRESSURE GLOW	25
	DISCHARGE	25
Inv.8	F. Krčma, I. Bocková, V. Mazánková, A. Hrdlička, V. Kanický, P. Krásenský	
	INFLUENCE OF METALLIC VAPORS ON THE NITROGEN	
	POST-DISCHARGE	27
Inv.9	M. Dors	
	DESTRUCTION OF FREONS USING ATMOSPHERIC PRESSURE	•
	MICROWAVE PLASMA SOURCES	29
Inv.10	E. Marotta, M.Schiorlin, M. Rea, C. Paradisi	
	ADVANCED OXIDATION OF ORGANIC POLLUTANTS INDUCED BY	0.1
	ATMOSPHERIC PLASMAS IN AIR	31
Inv.11	A. Brablec, G. Neagoe, J. Rahel, P. Slavicek, M. Zahoran	
	UNDERWATER DIAPHRAGM DISCHARGE FOR TEXTILE TREATMENT	33
Inv.12	L.V. Simonchik	
	GENERATION OF NON-THERMAL HIGH-PRESSURE PLASMAS USING	25
	GLOW DISCHARGES IN THREE-ELECTRODE CONFIGURATION	35
Oral P	resentations	37
Jul		
01	J. Diatczyk, G. Komarzyniec, H.D. Stryczewska	
	POWER CONSUMPTION OF GLIDING ARC DISCHARGE PLASMA	_
	REACTOR	39

11

02	V.F.Boretskij, K.Yu. Catsalap, E.A. Ershov-Pavlov, L.K. Stanchits, K.L.	
	Stepanov, A.N. Veklich	
	SELF-REVERSED EMISSION LINES OF NEUTRAL COPPER AS A TOOL	
	FOR DIAGNOSTICS OF DC ARC PLASMA	41
03	Z. Machala, M. Janda, V. Martišovitš	
	TEMPORALLY RESOLVED EMISSION SPECTROSCOPY OF TRANSIENT	
	SPARK DISCHARGES	43
04	S. V. Goryachev, V. N. Senchenko, V. F. Chinnov, V. V. Shcherbakov	
	MEASURING SYSTEM FOR INVESTIGATION OF HETEROGENEOUS	
	PLASMA DURING PLASMA SPRAYING	44
05	V.A. Bityurin, E.A. Filimonova	
	MODELING OF LOW TEMPERATURE INFLAMMATION INITIATED	
	BY DISCHARGE IN HYDROCARBON-AIR MIXTURES	47
06	I.V. Khvedchyn, D. S. Skamarokhau, A. L. Mosse, V. V. Sauchyn	
	PLASMA PROCESSING OF LIQUID HYDROCARBONS WITH TECHNICAL	
	HYDROGEN AND ACETYLENE PRODUCING	49
07	A.A. Tropina	
	NUMERICAL SIMULATION OF SPARK IGNITION PROCESS	51
08	V. Prysiazhnyi, M. Cernak, J. Havel	
	ATR-FTIR AND TOF LDI MS STUDY OF ATMOSPHERIC PRESSURE	
	PLASMA ACTIVATED ALUMINIUM SURFACE	53
09	A.A.Goncharov, A.N.Evsyukov, E.G. Kostin	
	PLASMAOPTICAL MAGNETRON: NEW RESULTS AND APPLICATION	55
010	Y. Sun, A.G. Chmielewski, S. Bułka, Z. Zimek	
	TOLUENE DECOMPOSITION IN AN AIR MIXTURE IN AN ELECTRON	
	BEAM GENERATED NON-THERMAL PLASMA REACTOR AND ITS BY-	
	PRODUCTS IDENTIFICATION	57
011	N.R. Minkova	
	MODELING OF CLASSICAL COULOMB SYSTEMS UNDER	
	CONSIDERATION OF FINITE INSTRUMENTAL RESOLUTION SCALES	59
012	V.A. Zhovtyansky, Yu.I. Lelyukh, Ya.V. Tkachenko	
	CRITERION OF ELECTRIC ARC PLASMA NONEQUILIBRIUM DUE TO	
	RADIATION EFFECTS	61
013	V.V. Tsiolko, V.Yu. Bazhenov, V.A. Khomich	
	FEATURES OF THE BAC. SUBTILIS SPORES INACTIVATION BY UV	
	RADIATION OF COLD HOLLOW CATHODE DISCHARGE PLASMA	63
014	I.P. Smyaglikov	
	TIME-SPATIAL STRUCTURE AND PARAMETERS	
	OF A CARBON ARC PLASMA AT LOWERED PRESSURE	65
015	A.I. Shchedrin, D.S. Levko, V.Ya. Chernyak, V.V. Yukhimenko, V.V. Naumov	
	PLASMA KINETICS IN ELECTRICAL DISCHARGE IN MIXTURE OF	
	ETHANOL WITH AIR IN PLASMA CHEMICAL REACTOR IN REGIME WITH	
	ONE SOLID ELECTRODE	67
016	V. F. Virko, V. M. Slobodyan, Yu. V. Virko and K. P. Shamrai	
	CONTROL OF METHANE PLASMA OUTFLOW FROM A MAGNETIC FIELD	
	ENHANCED INDUCTIVELY COUPLED PLASMA	69
017	A.N. Bandura, O.V. Byrka, V.V. Chebotarev, I.E. Garkusha, V.A. Makhlay,	
	V.I. Tereshin, T.S. Skoblo, S.G. Pugach	
	ALLOYING AND MODIFICATION OF STRUCTURAL MATERIALS UNDER	
	PULSED PLASMA TREATMENT	71

Poster Presentations

P1	V.A. Zhovtyansky, Yu.I. Lelyuh, O.V. Anisimova	
	DETERMINATION OF PARAMETERS OF STATIONARY SPHERICAL GLOW	75
DJ	DISCHARGE S. Lashkay, B. Kudana, M. Chiahina, I. Kluson, M. Tiahy	75
P2	S. Leshkov, P. Kudrna, M. Chichina, J. Kluson, M. Tichy LANGMUIR PROBE DIAGNOSTICS OF HOLLOW CATHODE PLASMA JET	
	SYSTEM: RADIAL DISTRIBUTION OF PLASMA PARAMETERS	77
р2		//
P3	I.P. Smyaglikov, N.I. Chubrik, L.E. Krat'ko, S.V. Goncharik, N.M. Chekan DIAGNOSTICS OF THE CATHODIC-ARC EROSIVE PLASMA	
		70
D4	DURING DEPOSITION OF DIAMOND-LIKE CARBON FILMS L. Poláchová, F. Krčma, J. Čáslavský	79
P4	L. Polachova, F. Krema, J. Caslavsky ANALYSIS OF THE PRODUCTS OF THE REACTION BETWEEN NITROGEN	
		01
D <i>5</i>	AND METHANE GENERATED IN THE GLIDING ARC DISCHARGE	81
P5	V. V. Gorin, V. Ya. Chernyak	
	SIMPLEST MATHEMATICAL MODEL OF CURRENT-VOLTAGE	83
D	CHARACTERISTIC FOR NORMAL GLOW DISCHARGE	05
P6	V. V. Gorin	
	NON-LOCAL EQUATION FOR THE SOURCE OF IONIZATION IN GLOW	05
D7	DISCHARGE AND HOLLOW CATHODE DISCHARGE	85
P7	V. V. Gorin	
	ELECTRO-MECHANICAL RESONANCE IN THE MONO-DISPERSED	07
DO	DROPPED FLOW	87
P8	A.I. Shchedrin, D.S. Levko, V.Ya. Chernyak, V.V. Yukhimenko, V.V. Naumov PLASMA KINETICS IN ELECTRICAL DISCHARGE IN MIXTURE OF	
	ETHANOL WITH AIR IN PLASMA CHEMICAL REACTOR IN REGIME WITH	00
DO	BOTH SOLID ELECTRODES	89
P9	O.Yu. Kravchenko, O.V. Pyankova	
	THE INFLUENCE OF THE ELECTRON EMISSION ON CATHODE LAYER IN	00
D10	LOW PRESSURE GLOW DISCHARGE	90
P10	S.S. Sidoruk, V.Ya. Chernyak, S.V. Olszewski	02
D11	PULSED DISCHARGE IN A GAS CHANNEL WITH LIQUID WALL	92
P11	Iu.P. Veremii, V.Ya. Chernyak, Eu.K. Safonov, L.L. Kyslytsya	
	SPECTRA OF PLASMA SECONDARY DISCHARGE SUPPORTED BY THE	04
D13	TRANSVERSE ARC IN A MIXTURE OF ARGON+ETHANOL	94
P12	I.V. Prysiazhnevych, O.I. Lomonos, V.Ya. Chernyak, V.V. Yukhymenko,	
	S.V. Olzewski PLASMA PARAMETERS OF THE ATMOSPHERIC PRESSURE DISCHARGE	
		06
D12	IN AIR CHANNEL WITH WATER WALL	96
P13	V.V. Yukhymenko, V.Ya. Chernyak, M.O. Verovchuk	
	REFORMING OF ETHANOL IN PLASMA - LIQUID SYSTEM WITH	00
D14	DISCHARGE IN GAS CHANNEL WITH LIQUID WALL	98
P14	S. Olszewski, Ol. Solomenko, V. Yukhymenko, V. Chernyak COMBINED AFFECTING OF ULTRASONIC FIELD AND PLASMA	
	DISCHARGE IN A GAS CHANNEL WITH A LIQUID WALL TO THE	100
D1 <i>5</i>	WATER-PHENOL SOLUTIONS	100
P15	S. Olszewski, O. Solomenko, I. Prysiazhnevych, V. Chernyak	
	COMBINED AFFECTING OF ULTRASONIC FIELD AND PLASMA	
	DISCHARGE IN A GAS CHANNEL WITH A LIQUID WALL TO THE	102
	DISTILLED WATER	102

P16	I.V. Prysiazhnevych, Ok.V. Solomenko, V.Ya. Chernyak, V.V. Naumov,	
	J. Diatczyk, H.D. Stryczewska	
	OPTICAL DIAGNOSTICS OF PLASMA IN GLIDING ARC WITH STAINLESS	
	STEEL ELECTRODES	104
P17	Ok.V. Solomenko, V.Ya. Chernyak, I.V. Prysiazhnevych	
	FEATURES OF PROCESSING OF METALS EMISSION SPECTRA WITH LOW	
	RESOLVED MULTIPLET STRUCTURES FOR PLASMA DIAGNOSTICS	106
P18	V.V. Yukhymenko, M.O. Verovchuk, V.Ya. Chernyak, I.V. Prysiazhnevych,	
	V.V. Naumov	
	PROPERTIES OF THE TRANSVERSAL ARC PLASMA IN AIR + ETHANOL	
	MIXTURE	108
P19	O.V. Samchuk, O.I. Kelnyk	
	EXCIMER IONS' GENERATION IN THE NE-XE PULSE MICRODISCHARGE	
	INSIDE THE DIELECTRIC CELL	110
P20	M. Bryjak, I. Gancarz, K. Smolińska, J. Kunicki	
	DIELECTRIC BARRIER DISCHARGE PLASMA IN MODIFICATION OF	
	POROUS POLYMER MEMBRANES	112
P21	I. Gancarz, K. Malecha, L. J. Golonka	
	PLASMA BONDING OF PDMS TO GLASS/LTCC FOR MICROFLUIDIC	114
Daa	APPLICATION	114
P22	E.Kuvaldina, V.Rybkin	
	PROCESSES OF SURFACE OXIDATION AND DESTRUCTION OF	
	POLY(PROPYLENE) AT ACTION OF WATER VAPOR PLASMA AND ITS	110
D22	FLOWING AFTERGLOW	116
P23	S.V. Petrov, V.N. Korzhyk, G.S. Marynsky, N.P. Lutic, A.I. Demjanov PLASMA-ARC UNIT FOR TREATMENT OF LIQUID WASTE AND ORGANIC	
	CONTAINING WATER EMULSION	118
P24	F. S. Lonbar, A. H. Colagar, S. Mirzanejad, A. V. Omran	110
1 44	BACTERIAL BROAD-SPECTRUM STERILIZATION USING AFTERGLOW OF	
	A NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE	120
P25	R.V. Bogdanov	120
1 23	THE COMPARISON OF THE PLASMA ENHANCED METHODS OF SINGLE-	
	WALLED CARBON NANOTUBES FABRICATION	122
P26	O.V. Yaroshchuk, R.M. Kravchuk, V.V. Tsiolko, S.S. Pogulyai, A.I. Shchedrin,	1
1 20	A.G. Kalyuzhnaya	
	POLYIMIDE TREATMENT BY DIELECTRIC BARRIER DISCHARGE FOR	
	ALIGNMENT OF LIQUID CRYSTALS	124
P27	S. J. Rubio, M. C. Quintero, A. Rodero	
	DESTRUCTION OF VOCS BY A HELIUM ARGON AND AIR MICROWAVE	
	PLASMA TORCH	126
P28	L.V. Shmeleva, A.D. Suprun, S.M. Yezhov	
	DETERMINATION OF DESTRUCTION THRESHOLDS OF THE SURFACE BY	
	LASER IRRADIATION	128
P29	V. Sázavská, F. Krčma	
	CLEANING OF CORROSION LAYERS FORM IRON BY RF LOW PRESSURE	
	HYDROGEN PLASMA	130
P30	P. Dineff, D. Gospodinova, I. Avramova	
	INVESTIGATION ON DIELECTRIC BARRIER DISCHARGE SURFACE	
	ACTIVATION EFFECTS	132

P31	N.V. Tarasenko, A.A. Nevar, M.I.Nedelko, E.I. Mosunov, A.I. Ancharov,	
	T.F.Grigoryeva	
	ELECTRICAL DISCHARGE PLASMA ASSISTED SYNTHESIS AND	
	MODIFICATION OF COMPOSITE NANOPARTICLES IN LIQUIDS	134
P32	S.J. Rubio, A. Rodero, M.C. Quintero, R. Álvaez, L.L. Alves	-
102	EXPERIMENTAL VERIFICATION OF A 2-D MODEL FOR AXIAL	
	INJECTION TORCH	136
D22		150
P33	I.I. Filatova, V.V. Azharonok, L.N. Mel'nikova, O.E. Shedikova	120
-	DECONTAMINATION OF SURFACES BY LOW-PRESSURE RF PLASMA	138
P34	O.A. Nedybaliuk, V.Ya. Chernyak, S.V. Olzewski	
	BUTT COPPER ARC IN HYDROGEN	140
P35	V. F. Semenyuk, I. V. Korotash, E. M. Rudenko, V. F. Virko, V. M. Slobodyan,	
	K. P. Shamrai	
	MULTIFUNCTIONAL DISCHARGE SYSTEM FOR PRECISE PLASMA-	
	CHEMICAL PROCESSING OF MICRO AND NANO ELECTRONICS	
	MATERIALS	142
P36	L. Bónová, V. Medvecká, A. Zahoranová, T. Plecenik, J. Greguš, M. Černák	- · -
100	MODIFICATION OF ALUMINIUM SURFACE BY DIELECTRIC COPLANAR	
	SURFACE BARRIER DISCHARGE	144
P37	O.D. Volpian, A.I. Kuzmichev, Yu.A. Obod, P.P. Yakovlev	144
F3/	1 , , , ,	
	OPTICAL NANOGRADIENT COATING DEPOSITION BY REACTIVE PULSE	1.1.0
	MAGNETRON SPUTTERING	146
P38	Iu.P. Veremii, V.Ya. Chernyak, S.A. Filatov, S.V. Olszewski, Eu.K. Safonov,	
	S.M. Sidoruk	
	GENERATION OF CNM IN THE PLASMA OF SECONDARY DISCHARGE	148
P39	I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Minakova	
	INFLUENCE OF ELECTRIC ARC DISCHARGE PLASMA ON ELECTRODE	
	SURFACE PROCESSES. I. COMPOSITE ELECTRODES ON COPPER BASE	150
P40	I.L. Babich, V.F. Boretskij, A.N. Veklich	
	PLASMA OF ELECTRIC ARC DISCHARGE PLASMA IN A GAS FLOW	152
P41	R.V. Semenyshyn, I.L. Babich, V.F. Boretskij, A.N. Veklich, L.A. Kryachko	
	INFLUENCE OF ELECTRIC ARC DISCHARGE PLASMA ON ELECTRODE	
	SURFACE PROCESSES. II. COMPOSITE ELECTRODES ON SILVER BASE	154
P42	E.V. Martysh, V.E. Martysh	154
Г 42		156
D 42	SOME PROBLEMS OF PLASMA-ENHANCED IGNITION MODELING	156
P43	Yu.S. Borisov, I.V. Krivtsun, S.G. Voinarovich, A.N. Kislitsa,	
	E.K. Kuzmich-Yanchuk	
	HYBRID LASER-PLASMA COATING PROCESS	158
P44	O.V.Chernets, V.M.Korzhyk, G.S.Marynsky, S.V.Petrov, V.A.Zhovtyansky	
	MEDICINE WASTE PROCESSING	160
P45	Yu.V. Lavrookevich, V.Ya. Chernyak, T.E. Lisitchenko	
	PROPERTIES OF DUSTY PLASMA OF THE DISCHARGE WITH THE	
	HOLLOW CATHODE	162
P46	M. Dors, J. Mizeraczyk	
	DE-NO _x PROCESS IN CORONA DISCHARGE-CATALYST REACTOR	164
P47	E.K. Safonov, V.Ya.Chernyak, S.V. Olzewski, I.V. Prysiazhnevych	10.
· ·/	PLASMA-LIQUID SYSTEMS WITH GAS-DYNAMICS QUENCHING	166
P48	V.S. Taran, V.V. Krasnyj, A.V. Klosovskij, R.M. Muratov, O.T. Semenova,	100
1 40	V.S. Taran, V.V. Krasnyj, A.V. Klosovskij, K.M. Muratov, O.T. Semenova, V.I. Tereshin	
	INACTIVATION OF MICROORGANISMS USING COMBINATION OF	1.00
	OZONE AND ULTRASOUND	168

P49	V.S. Taran, V.V. Krasnyj, S.P. Gubarev, R.M. Muratov, G.P. Opaleva,	
	M.I. Zolototrubova	
	OZONE GENERATION CHARACTERISTICS OF SUPERIMPOSED	
	DISCHARGE WITH SURFACE AND DBD	169
P50	T. Homola, A. Zahoranová, T. Plecenik, R. Krumpolec, M. Černák	
	GLASS SURFACE MODIFICATION USING NON-EQUILIBRIUM PLASMA	
	GENERATED BY DCSBD AT ATMOSPHERIC PRESSURE	170
P51	S.V.Dudin, D.V.Rafalskyi	
	TWO MODES OF ION EXTRACTION IN SINGLE-GRID ION SOURCE	172
P52	V.A. Lisovskiy, N.D. Kharchenko, V.D. Yegorenkov	
	RADIAL STRUCTURE OF THE LONGITUDINAL COMBINED DISCHARGE	
	IN SF ₆	174
P53	B. P. Dojčinović, D. Manojlović, G.M. Roglić, B. M. Obradović, M. M. Kuraica,	
	J. Purić	
	DECOLORIZATION OF THE AZO DYE REACTIVE BLACK 5 USING	
	COAXIAL DBD REACTOR	176
P54	B. M. Obradović, M. M. Kuraica, J. Purić	
	SPECTRAL CHARACTERISTICS OF FALLING FILM DBD IN NITROGEN	178
P55	A.F. Bardamid, V.N. Bondarenko, J. Davis, V.S. Voitsenya	
	MODIFICATION OF METAL MIRROR SURFACES UNDER IMPACT OF	
	HYDROGEN PLASMAS CONTAMINATED WITH OXYGEN OR CARBON	180
P56	V. Chyhin, P. Gorun	
	OXYGEN ALLOTROPIC FORMS IN CORONA IN N2-O2 MIXTURES	182
P57	Yu. V. Virko, V. F. Virko, V. M. Slobodyan, K. P. Shamrai	
	COMPACT HELICON PLASMA SOURCE WITH A FERRITE MAGNETIC	
	SYSTEM FOR MATERIALS PROCESSING APPLICATIONS	184
P58	V. M. Slobodyan, V. F. Virko, Yu. V. Virko, K. P. Shamrai	
	INDUCTIVELY COUPLED MAGNETIZED PLASMA SOURCE WITH	
	PERMANENT MAGNETS FOR MATERIALS PROCESSING	186
Author	Index	188
List of	Participants	192

III CESPC, August 23 - 27, 2009, Kyiv, Ukraine

INVITED LECTURES

INVESTIGATION ON DIELECTRIC BARRIER DISCHARGE SURFACE ACTIVATION EFFECTS

P. Dineff¹, D. Gospodinova¹ and I. Avramova²

¹Technical University of Sofia, Faculty of Electrical Engineering, Dept. of Electrical Apparatus, St. Kliment Ohridski Blvd. 8,Sofia 1756,Bulgaria; e-mail: <u>dineff_pd@abv.bg</u>, <u>dilianang@abv.bg</u> ²Bulgarian Academy of Science, Institute of General and Inorganic Chemistry, Acad. Georgi Bonchev str. 11, Sofia 1113, Bulgaria; e-mail: <u>iva@igic.bas.bg</u>

1. INTRODUCTION

The plasma aided flame retardation of wood, wooden products and cellulosic fibrous materials has been conceived and developed as a result of a new plasma aided process of capillary impregnation. The plasma-chemical surface pre-treatment of wood modifies the chemical activity of its surface as well as the capillary activity of wood and improves such technological characteristics of the capillary impregnation process as the penetration depth, speed of solution spreading and adsorption, and specific quantity of adsorbed solution per unit of area. This allows using the plasma aided retardation as a finishing process and applying it in situ. A system of plasma device and applicators has been created to produce cold technological plasma through barrier electrical discharge (DBD) at atmospheric pressure and room temperature [1, 2].

2. DIELECTRIC BARRIER DISCHARGE SURFACE ACTIVATION EFFECTS

2.1. XPS – a surface analysis technique used to study the surface reorganization after plasma pre-treatment

X-ray photoelectron spectroscopy (XPS) is a very powerful non-destructive surface analytical technique which provides valuable data on chemical surface composition and surface reorganization after plasma-chemical pre-treatment. XPS is a surface chemical analysis technique that can be used successful to analyze the surface chemistry of a material in its "as received" state, or after some treatment such as cold plasma pre-treatment. The binding energy is a characteristic of the atoms, which can be used for elemental identification. XPS analysis for this work was carried out using a photoelectron spectrometer VGS ESCALAB Mk II with Al K radiation (FWHM = 0.5 eV). The angle between the directions of the incident X-ray and that of the observations (fixed by analyzer entrance slit) was 50. XPS spectra are obtained by irradiating a material with a beam of X-rays while simultaneously measuring the kinetic energy and number of electrons that escape from the top 1 to 10 nm of the material being analyzed. XPS detects all elements with an atomic number (*Z*) of 3 (lithium) and above. This limitation means that it cannot detect hydrogen (*Z*=1) or helium (*Z*=2). Detection limits for most of the elements are in the parts per thousand (ppm) range.

The interpretation of the curve fit of the carbon C1s peak after *Kazayawoko* (1998) was used to interpret the changes of wood surface chemistry after plasma pre-treatment: binding energy of $285.00\pm0.4 \text{ eV}$ corresponds to C-C and C-H kind of chemical bonds; $286.5\pm0.4 \text{ eV}$ – to C-O, C-OH, and H-C-OH; $288.0\pm0.4 \text{ eV}$ – to C=O and O-C-O; $289.5\pm0.4 \text{ eV}$ – O-C=O. This study was developed as part of a large investigation on plasma-chemically activated and flame retarded wood surface.

2.2. Surface activation effects after DBD pre-treatment

Wood inactivation is a surface phenomenon affecting just a thin outer layer of wood. An inactivated wood surface does not absorb capillary well an impregnating solution containing phosphorous

III CESPC, August 23 - 27, 2009, Kyiv, Ukraine

compound as flame retardant. Plasma-chemical surface activation (functionalization) with an effective participation of ionic surfactants and silicone spreaders eliminates the inactivation-impregnating problem creating a protective flame retardant layer on the wood surface.

Kind of Wood:	Samples			Chemical Surface Composition, at. %				
Density, kg/m ³			Carbon Peaks	С	0	Ν	O/C	N/C
Heart Douglas Fir wood (Pseudotsuga menziesii, Canada): 678 kg/m^3	K (Non-Treated)		Voltage	77.69	21.79	0.52	0.28	0.0067
	DBD Pre- treated	SO	10 kV (50 Hz)	68.30	31.70	0.00	0.46	0.0000
		SN	15 kV(50 Hz)	69.10	29.90	1.00	0.43	0.0145
		SHF	10 kV (10 kHz)	74.00	25.50	0.50	0.34	0.0068
Heart Pine Wood	K (Non-T	Treated)	Voltage	74.80	24.40	0.70	0.32	0.0094
(Pinus		SO	10 kV (50 Hz)	70.10	28.50	0.60	0.41	0.0086
Sylvestris, Bulgaria: 371 <i>kg/m³</i>		SN	15 kV(50 Hz)	70.40	29.00	0.60	0.41	0.0058
		SHF	10 kV (10 kHz)	73.50	26.10	0.40	0.36	0.0049

	Table 1: XPS-measurement results - elemental composition across	s the to	p the softwood surface.
--	---	----------	-------------------------

XPS-measurement results, Table 1, and carbon and oxygen peaks analysis led to the conclusion that the air plasma-chemical treatment at atmospheric pressure by DBD was a useful and effective method for surface chemical activation of inactivated wood (douglas fir, pine) by oxidation of lignin, resin and extractive materials.

2.3. Surface effects after DBD –aided capillary impregnation

XPS-measurement results and phosphor peak analysis showed the improvement of the capillary impregnation process – less phosphor in the chemical surface composition after DBD plasma pretreatment and capillary impregnation – the surface layer (thickness less then 5 nm) holds less phosphor compound after plasma-aided impregnation – it goes in the depth of the wood.

CONCLUSION

The investigations on plasma-aided capillary impregnation carry out by XPS surface analysis technique hold out new opportunities for improvement of the impregnation flame retardency of wood and wood products.

ACKNOWLEDGMENTS

The financial support of the National Science Fund, Ministry of Education and Science of Bulgaria, for the Research Project DO-02-11: EF/2009 is gratefully acknowledged.

REFERENCES

- Beecher, J., Frihart, C.: X-ray Photoelectron Spectroscopy for Characterization of Wood Surfaces in Adhesion Studies. Wood Adhesives 2005: Session 1A – Analytical Techniques, pp. 83÷89.
- [2] Dineff, P., Gospodinova, D., Kostova, L., Vladkova, T., and Chen, E. "Plasma aided surface technology for modification of materials referred to fire protection". Problems of Atomic Science and Technology, 2008, 6; Series Plasma Physics (14), pp. 198÷200.
- [3] Dineff, P., Gospodinova, D. "Electrode Configuration and Non-Uniform Dielectric Barrier Discharge Properties". XVI-th International Symposium on Electrical Apparatus and Technologies "SIELA 2009", 04÷06 June 2009, Bourgas, Bulgaria; Proceedings, 2009, vol. 1, pp. 79÷88.