Agricultural Engineering
Списание „Селскостопанска техника“

Инж. Екатерина Петрова – зам. гл. редактор,
tел.: (+359 2) 70 91 64
1113 София, бул. „Цариградско шосе“ 125, бл. 1
E-mail: ssstechnika@abv.bg

J. „Agricultural Engineering“

Eng. Ekaterina Petrova – Deputy-Editor-In-Chief,
Phone: (+359 2) 70 91 64
1113 Sofia, 125 Tsarigradsko shose Blvd, Block 1
E-mail: ssstechnika@abv.bg

2001, с/о Jusautor
ISSN 0037-1718
Тираж: 150
Печатни коли: 4.5
Авторски коли: 7.8
Коректор: Е. Симеонова

Печат във
„Воленпринтер ЕООД“
GSM 088 316 324

Предпечатна подготовка:
ФОТОНИКА
Бул. „Цариградско шосе“ 83, бл. 107, а. б, тел. 973-95-62
e-mail: fotnika@techno-link.com http://fotnika.bit.bg
СЕЛСКОСТОПАНСКА ТЕХНИКА®

НАУЧНО СПИСАНИЕ НА:
ИНСТИТУТА ПО МЕЛИОРАЦИИ И МЕХАНИЗАЦИЯ И ЦЕНТЪРА ПО НАУЧНО-ТЕХНИЧЕСКА ИНФОРМАЦИЯ

SCIENTIFIC MAGAZINE OF: INSTITUTE FOR LAND RECLAMATION AND AGRICULTURAL MECHANISATION AND CENTRE FOR SCIENTIFIC-TECHNICAL INFORMATION

Година XXXVIII, 6/2001, София
Volume XXXVIII, 6/2001, Sofia

НОСИТЕЛ НА ОРДЕН „КИРИЛ И МЕТОДИЙ“ II СТЕПЕН

СЪДЪРЖАНИЕ

МЕХАНИЗАЦИЯ И АВТОМАТИЗАЦИЯ В РАСТЕНИЕВЪДСТВОТО
Влияние на циркулярната скорост на секция диск върху равномерността на изсъване на сеялка СХД-2
А. Трифонов, С. Илиев... 3
Производствен опит със сеялка за точна сеентба СМН-3
Х. Белов, Ж. Демирев... 6

МЕХАНИЗАЦИЯ И АВТОМАТИЗАЦИЯ В ЖИВОТНОВЪДСТВОТО
Сравнително изследване върху строително-конструктивни решения за малогабаритна животновъдна страда
Д. Димов, Н. Делчев, К. Ковачев... 10

СЪЗДАВАНЕ, ИЗПИТВАНЕ И ВНЕДРЯВАНЕ НА СЕЛСКОСТОПАНСКА ТЕХНИКА
Електроискровая уредба за обработка на тютюневи листа с дозирано подаване на енергията
Н. Арменов, Т. Гачовска, Г. Гачовски, Т. Стоянова, Ст. Димитрова, Н. Недялков............... 16
Технологично изпитване на верижен трактор с хидрообемна трансмисия
Б. Тимеев, В. Драганов... 23

МАШИНОИЗПОЛЗВАНЕ И РЕМОНТООБСЛУЖВАЩА ДЕЙНОСТ
Горивна икономичност на двигателя, трактор и машинно-тракторен агрегат
С. Божков.. 28

МАТЕРИАЛИ, ПУБЛИКУВАНИ В СПИСАНИЕТО ПРЕЗ 2001 Г. .. 33
CONTENTS

MECHANIZATION AND AUTOMATION IN PLANT GROWING

The effect of the peripheral speed of the sowing by the SHD-2 planter
A. Trifonov, S. Ishpekov ... 3
Field experiment by an SMN 3 precision planter
H. Beloev, Zh. Demirev ... 6

MECHANIZATION AND AUTOMATION IN ANIMAL HUSBANDRY

Comparative investigation on the construction and design solution concerning
a small-size stock-breeding building
D. Dinev, N. Delchev, K. Koleva ... 10

DEVELOPMENT, TESTING AND INTRODUCTION OF AGRICULTURAL MACHINERY

Electric spark equipment for tobacco leaves treatment with energy doses
Supply
Tractive testing of a crawler tractor featuring a hydraulic volume (powershift) transmission
B. Gigov, V. Draganov ... 23

USE AND MAINTENANCE OF THE MACHINES

Fuel-sawing capacity of an engine, a tractor and a tractor/implement combination
S. Bozhkov ... 28

ARTICLES AND OTHER MATTERS PUBLISHED IN THE JOURNAL DURING 2001 33
Теглително изпитване на верижен трактор с хидрообемна трансмисия

Бойко Гъзов, Вълко Драганов
Технически университет, София – 1756

Хидрообемната трансмисия осигурява безстепенно изменение на теглителната сила и скоростта на движение на трактора в необходимия работен теглителен диапазон. При някои специализирани трактори това се извършва особено полезно с оглед спецификата на извършваните от тях работи. Именно такъв верижен трактор от теглителен клас 9 kN, предназначен за тесноредовото лозарство е проведен теглително изпитване в пъти условия. Тракторите с хидрообемна трансмисия обикновено се явяват модификация на базов модел от същия клас с механична трансмисия. При теглителното изпитване на верижната машина с хидрообемна трансмисия за натоварване е използвана верижна машина от базовия модел.

Особеност на настоящото изпитване е възможността да се поддържа един и същ режим на работа на двигателя вътрешно горение (ДВГ) – с номинална честота на въртене и съответната номинална мощност при максимално подаване на гориво и различни теглителни усилия, реализиращи от изпитване трактор. Това осигурява икономична работа на ДВГ от една страна, а от друга дава възможност да се оценят изходните показатели на трактори при постоянна мощност на входа на трансмисията и по характера на кривата на теглителната мощност да се съди директно за теглителния коефициент на полезно действие (КПД) и влиянието върху него на отделните външове загуби, които го формират. За тази цел управляването на трансмисията се осъществява ръчно, а не автоматично. При всеки опит след установяване на желаното теглително натоварване се коригира предварително числото на трансмисията, чрез изменение на работните обеми на регулиряемите хидромашини така, че честотата на въртене на ДВГ да бъде винаги един и съща, равна на номиналната съгласно зависимостта:

\[V \cdot \Delta P = \frac{P}{n_{\text{hm}}} \cdot \frac{60}{n_{n}} \]

където:
- \(V \) – работният обем на помпите, \(\text{cm}^3/\text{тг} \);
- \(\Delta P \) – работното налягане, MPa;
- \(P_n \) – номиналната мощност на ДВГ, W;
- \(n_{\text{hm}} \) – номиналната честота на въртене на ДВГ, tr/min;
- \(n_n \) – хидромеханичният КПД на помпите.

Увеличаването на теглителното натоварване на трактора предизвика увеличаване на работното налягане в трансмисията, което съответства намаляване на работния обем на помпите, респективно увеличаване на предварителното числено и намаляване на скоростта на движение.

Оцениваниятото на работата на ДВГ с номинална мощност, при различни теглителни режими не може да се осъществи само при работа с много ниски скорости на движение и с много малки теглителни усилия, близки до нула, когато ДВГ работи по регуляторния клон (не може да се натовари до номинален режим) и се достигат съответно максималното работно налягане и максималните работни обеми на хидромашиите. При изпитване на трактори с механична трансмисия поради постоянното предварително число, режимът на работа на ДВГ се променя по регуляторния или по безрегулаторния клон в зависимост от предавката при всяко ново теглително усилие.

Трансмисията на изпитваната машина се състои от два независими хидрообемни клонови и механична част с два диапазона – I работен и II транспортен (фиг. 1). Освен теглителната сила \(P \) и времето \(t \) за преминаване на машините през измервателните участъци при всеки опит се измерват и относителните работен обем на двете регулърни помпи \(k_1 \) и \(k_2 \), работното налягане \(\Delta P = P_2 - P_1 \), разходът на гориво \(Q \) и оборотите на задвижващите дясно и яво верижни колела \(n_1 \) и \(n_2 \). Температурата на работната течност в резервоара на хидротрансмисията и честотата на въртене на двигателя се поддържат в границите: \(T_m = 65 \pm 2 ^\circ C \); \(n_n = 1500 \pm 10 \text{ min}^{-1} \).

Теглителното изпитване е извършено при праволинейно движение на изпитвания трактор, което предполага практически еднакъв работен обем на двете помпи и еднакво работно налягане в двета независими хидрообемни кръга.

Натоварващата машина осигурява различно по големина постоянно теглително натоварване при всеки опит, което се подбира чрез включване на подходяща предпака в нейната предварителна кутия и изменение на честотния режим на нейния ДВГ. Измервателният участък е линиен с дължина \(L = 20 \text{ m} \), без големи неравности и с възможно най-малък наклон. Преди нализване на машините в него, режимът на натоварване се установява на подготвителен участък с дължина около 15 m. (фиг. 2)
Всички опити са проведени при включени работни диапазони в механичната част на трансмисията на изпитвания машини. Средната скорост \(u \) за преминаване през измервания участък, теглителната мощност \(P_m \), коефициентът на буксуване \(\delta \), часовият \(G_t \) и специфичният теглителен разход на гориво \(g_o \) се определят по методика, която се използва и при теглителните изпитвания на трактори с механична трансмисия [1].

Теглителната сила се регистрира на хартиена лента и от записа се пресмята стойността \(\dot{m} \) за всеки опит в \(\text{kN} \), като се отчете мащабният коефициент (фиг. 3).

За относителния обем на помпите се получава известна разлика при праволинейно движение на трактора поради разликата в обемните за губи на двата кръга. На опитната диаграма е нанесена осреднената стойност от двите измервания.

\[k_v = \frac{k_{v1} + k_{v2}}{2}, \]

където

\[k_{v1} = \frac{V_1}{V_{1, \text{max}}}; \quad k_{v2} = \frac{V_2}{V_{2, \text{max}}}; \]

Теглителният КПД е определен чрез номиналната мощност на ДВГ, взета от техническата му характеристика.
Фиг. 3. Запис на теглителната сила
Fig. 3. Recording of the tractive force

(4) \(\eta_T = \frac{P_T}{P_H} \)

Получените опитни стойности на отделните показатели са дадени таблично и графично в таблица 1 и на фиг. 4.

За оценка влиянието на различните видове загуби върху теглителния КПД на трактора са определени и нанесени на отделна диаграма (фиг. 5) стойностите на коефициентите на полезно действие, отчитащи загубите от буксуване \(\eta_B \) и придвижване \(\eta_P \) обемите и хидромеханичните загуби в трансмисията. Съпротивление на придвижване \(F_P \), включващо вътрешните загуби във верижния движител от втори ред и външно съпротивление от деформациите на пътя са определени чрез допълнителни опити.

КПД, отчитащ обемните загуби е определен по зависимостта:

(5) \(\eta_0 = C \cdot \frac{v_T}{k_0} = C \cdot \frac{v}{(1 - \alpha)k_v} \)

където \(v_T \) е теоретичната скорост на движение, а

(6) \(C = \frac{30l_{kn}k_{kn}V_m}{\pi r_k \alpha_{mk} \pi KH_{km}} \)

се приема за константа;

\(l_{kn} \) и \(k_{kn} \) са предавателните числа на диапазонната кутия и крайното предаване;

\(r_k \) е кинематичен радиус на задвижващото вързано колело.

Таблица 1. Измерени и изчислени показатели при теглителното изпитване
Table 1. Measured and calculated parameters at traction testing

<table>
<thead>
<tr>
<th>(F_T)</th>
<th>(P_T)</th>
<th>(P_H)</th>
<th>(\eta_0)</th>
<th>(\eta_P)</th>
<th>(\eta_B)</th>
<th>(Q_T)</th>
<th>(n_{kn})</th>
<th>(k_{kn})</th>
<th>(v)</th>
<th>(P_k)</th>
<th>(G_k)</th>
<th>(g_k)</th>
<th>(\delta)</th>
<th>(\Delta P)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>10.3</td>
<td>7.55</td>
<td>130</td>
<td>130</td>
<td>997</td>
<td>999</td>
<td>8.82</td>
<td>130</td>
<td>998</td>
<td>9.54</td>
<td>0</td>
<td>3.28</td>
<td>0.00</td>
<td>35.72</td>
</tr>
<tr>
<td>2.11</td>
<td>80</td>
<td>10.3</td>
<td>8.71</td>
<td>130</td>
<td>130</td>
<td>868</td>
<td>690</td>
<td>14.83</td>
<td>131</td>
<td>889</td>
<td>8.26</td>
<td>4.84</td>
<td>220</td>
<td>4.78</td>
<td>987</td>
</tr>
<tr>
<td>3.87</td>
<td>102</td>
<td>10.4</td>
<td>10.4</td>
<td>130</td>
<td>130</td>
<td>753</td>
<td>755</td>
<td>17.77</td>
<td>131</td>
<td>754</td>
<td>6.94</td>
<td>7.48</td>
<td>539</td>
<td>4.81</td>
<td>645</td>
</tr>
<tr>
<td>8.32</td>
<td>131</td>
<td>10.4</td>
<td>12.3</td>
<td>132</td>
<td>132</td>
<td>651</td>
<td>655</td>
<td>20.95</td>
<td>132</td>
<td>653</td>
<td>5.88</td>
<td>10.29</td>
<td>468</td>
<td>4.79</td>
<td>465</td>
</tr>
<tr>
<td>7.34</td>
<td>142</td>
<td>10.4</td>
<td>14.4</td>
<td>131</td>
<td>132</td>
<td>561</td>
<td>565</td>
<td>24.65</td>
<td>132</td>
<td>563</td>
<td>5.01</td>
<td>10.92</td>
<td>496</td>
<td>4.82</td>
<td>441</td>
</tr>
<tr>
<td>9.88</td>
<td>167</td>
<td>10.5</td>
<td>16.3</td>
<td>132</td>
<td>134</td>
<td>504</td>
<td>508</td>
<td>27.63</td>
<td>133</td>
<td>506</td>
<td>4.43</td>
<td>12.15</td>
<td>552</td>
<td>4.77</td>
<td>393</td>
</tr>
<tr>
<td>11.92</td>
<td>189</td>
<td>10.5</td>
<td>19</td>
<td>133</td>
<td>134</td>
<td>440</td>
<td>446</td>
<td>32.37</td>
<td>134</td>
<td>443</td>
<td>3.79</td>
<td>12.56</td>
<td>571</td>
<td>4.79</td>
<td>381</td>
</tr>
<tr>
<td>14.12</td>
<td>216</td>
<td>10.5</td>
<td>22.7</td>
<td>135</td>
<td>138</td>
<td>382</td>
<td>388</td>
<td>38.81</td>
<td>137</td>
<td>385</td>
<td>3.18</td>
<td>12.47</td>
<td>567</td>
<td>4.81</td>
<td>368</td>
</tr>
<tr>
<td>15.89</td>
<td>237</td>
<td>10.6</td>
<td>25.5</td>
<td>139</td>
<td>143</td>
<td>351</td>
<td>357</td>
<td>43.42</td>
<td>141</td>
<td>354</td>
<td>2.82</td>
<td>12.46</td>
<td>566</td>
<td>4.78</td>
<td>354</td>
</tr>
<tr>
<td>17.04</td>
<td>234</td>
<td>10.6</td>
<td>28.2</td>
<td>147</td>
<td>149</td>
<td>337</td>
<td>345</td>
<td>48.12</td>
<td>148</td>
<td>341</td>
<td>2.55</td>
<td>12.08</td>
<td>549</td>
<td>4.79</td>
<td>390</td>
</tr>
</tbody>
</table>
V_{max} и V' са работните обеми на хидромашините.

КПД, отчитащ хидромеханичните загуби в хидрообемната част на трансмисията и механичните загуби в механичната част и във верижния двигател е определен от израза:

$$\eta_{\text{KM}} = \frac{\eta_T}{\eta_V \eta_f \eta_0}$$

На фиг. 5 е дадена и разликата в обемите на загуби на двата хидрообемни кръга при праволинейно движение, изразена чрез относителната разлика в работните обеми на двете помпи:

$$\Delta K_v = k_{v2} - k_{v1}$$

ИЗВОДИ

Предложена е методика за теглително изпитване на верижни машини с хидрообемна трансмисия, при която се използва ръчно регулиране на трансмисията и постоянен режим на ДВГ на изпитваната верижна машина.

Действителната форма на кривата на скоростта на трактора във функция на теглителната сила се отклонява от хиперболата на постоянна мощност, като се доближава до правата линия поради увеличаването на загубите в двата края на работния диапазон.

Работното налягане в трансмисията нараства практически линейно с нарастване на теглителното натоварване.

Теглителната мощност запазва максимални стойности в сравнително широк теглителен диапазон (от 10 до 17 kN), като изменението й в този диапазон не надвишава 5%.

Оптималният теглителен режим на трактора съответства на оптималния режим на работа на хидромашините по работно налягане, който най-често се движи в границите $k_p = 0,45-0,6$ [2].

На фиг. 5 е дадено влиянието на теглителното налягане на верижния трактор с хидрообемна трансмисия на всички режими на работа оказал хидромеханичните загуби, на второ място са загубите от придвижване, които са от един порядък с загубите от букурване и обемните загуби само при големи теглителни натоварвания. Загубите от букурване при тези условия имат най-малък относителен дял в общите загуби.

Работата на изпитваната верижна машина с хидрообемна трансмисия с малки теглителни натоварвания (под 6 kN) е по-ненужна отколкото при средни и големи такива поради големите хидромеханични загуби и загуби от придвижване.

С нарастване на теглителното натоварване на трактора се увеличава и относителната разлика в обемите на загуби на двата хидрообемни кръга при праволинейно движение, като зависимостта е нелинейна и максималната разлика за изпитваната машина не надвишава 2,5%.

ЛИТЕРАТУРА

1. Димитров, Й. Н. и Б. Гигов, Автомобилна техника – ръководство за лабораторни упражнения, София, Фабер 2000 г.
2. Петров, В. А., Гидрообемни трансмисии самоходни машини, Москва, Машиностроение, 1988 г.

Статията е постъпила в редакцията на 24.08.2001 г.
Tractive testing of a crawler tractor featuring a hydraulic volume (powershift) transmission

B. Gigov, V. Draganov
Technical University, Sofia – 1756

ABSTRACT
A tractive test of a crawler agricultural tractor with stepless hydraulic volume transmission was conducted in road conditions under the method of towing another loading machine. A trial tractive diagram was plotted, where parameters characterizing the duty of the hydraulic volume transmission are shown, too. An evaluation was made of the proportions of the various kinds of losses, arising in the operation of a caterpillar machine having hydraulic volume transmission, subject to the tractive loading.