XVI-th International Symposium on Electrical Apparatus and Technologies

SIELA 2009

PROCEEDINGS
Volume II

4 – 6 June 2009
Bourgas, Bulgaria

Programme Committee

Chairman: Ivan YATCHEV, Bulgaria

Members:
Slavoljub ALEKSIC, Serbia
Alexander ALEXANDROV, Bulgaria
Ganche BOJLOV, Bulgaria
Grigore CIVIDJAN, Romania
Dimitar DIMITROV, Bulgaria
Peter DINEFF, Bulgaria
Gerhard DREGER, Germany
Buulent ERTAN, Turkey
Bemd FRANKE, Germany
Laurent GERBAUD, France
Leonid GRCEV, Macedonia
Kermal HOT, Croatia
Wilfried JAEGGER, Germany
Tapari JOKINEN, Finland
Yasushi KANAI, Japan
Antonios KLADAS, Greece
Christian MAGELE, Austria
Iliana MARINOVA, Bulgaria
Ivan MASLAROV, Bulgaria
Bogdan MIEDZINSKI, Poland
Michel POLOJADOFF, France
Ivan POPA, Romania
Oleg PUJO, Ukraine
Maurizio REPETTO, Italy
Maxim RIAOCHITSKY, Russia
Ewen RITCHIE, Denmark
Yuri ROZANOV, Russia
Marek RUDNICKI, Poland
Yoshifumi SAKAMOKI, Japan
Vladimir SHEVCHENKO, Ukraine
Ilia STANEV, Bulgaria
Emil SOKOLOV, Bulgaria
Jan STROJNY, Poland
Jan SYKULSKI, England
Dimitar YUDO, Bulgaria
Hans-Heinz ZIMMER, Germany
Sergey ZIRKA, Ukraine

CONTENTS

Michael JAINDL, Alice KOSTINGER, Christian MAGELE and Werner RENHART
Multi-objective optimization using evolution strategies ... 7

Ziata CVETKOVIĆ, Bojana PETKOVİĆ, Mirjana PERIC
An external body in protected area ... 23

Peter DINEFF, Dilyana GOSPODINOVA, Ivailina ABRAMOVA
Energy characteristics and parameters of non-uniform (pin-to-plane) dielectric barrier discharge ... 30

Peter DINEFF, Dilyana GOSPODINOVA, Momchil SHOPOV
Non-equilibrium air discharge device for plasma-chemical functionalization ... 40

Elissaveta GADJEVA and Nikolay GADZEV
A nullator-norator model-based approach to analog circuit diagnosis 50

Elissaveta GADJEVA and Vladislav DUREV
Application of parametric spice simulation to hbt small-signal model parameter extraction ... 58

Georgi GANEV, Ekaterina GUEORJIEVA
An approach to estimation of low power loads influence on the supply grid 66

Georgi GANEV
Non-linear low power loads influence on the neutral current 74

Georgi GANEV, George Todorov, A KASSAMAKOV
Three-phase transformer additional losses ... 82

Galia GEORGIEVA-TASKOVA, Ilana MARINOVA, Valentin Mateev
Electric field distribution of high pressure discharge lamps 88

Galia GEORGIEVA-TASKOVA, Ilana MARINOVA, Valentin Mateev
Thermal modelling of high pressure discharge lamps ... 95

Zaharina GERGOVA, Vultchan GUEORIEV, Ivan YATCHEV and Alexander ALEXANDROV
Influence of some physical factors on the inductance of a coil with straight ferromagnetic core ... 103

Vultchan GUEORIEV
Some aspects of heating analysis of electrical equipment .. 109

Vultchan GUEORIEV, Krastio HINOV and Ivan YATCHEV
Static force characteristics of a permanent magnet electromagnets valve actuator - 3d finite element modelling and experiment 115

Vultchan GUEORIEV, Nikolaj MATANOV, Borisav BOJCHEV, Vasil GOSPODINOV
Energy efficiency of different approaches for compensation of capacitive loads 123

SIELA 2009, 4 – 6 June, Bourgas, Bulgaria, Vol. 2
MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTION STRATEGIES

Michael JAINDL*, Alice KÖSTINGER*, Christian MAGELE* and Werner RENHART*

* Graz University of Technology, Institute for Fundamentals and Theory in Electrical Engineering, Kopernikusgasse 24/3, A-8010 Graz, Austria
E-mail: Christian.Magele@TUGraz.at

Abstract. The present paper gives an overview of different versions of Evolution Strategies, namely the (1+1) Evolution Strategy, the Higher Order (μ/λ) Evolution Strategy and the Niching (μ/λ/μ) Evolution Strategy, and how these methods can be applied to problems in Electrical Engineering. Significant features of the algorithms implemented by the authors are presented. Finally, results are discussed on three electromagnetic optimization problems.

Keywords: Multi-Objective Optimization, Multi-Modal Optimization, Stochastic Optimization, Evolution Strategy

I. INTRODUCTION

Optimization both with deterministic and stochastic methods has been app
successfully over the last decades in all fields of engineering, including electri
cengineering. When solving practical electromagnetic problems where no hypothesis
be made a priori, deterministic methods often converge to one of the function’s l
minima. Therefore, if there is no or very little knowledge about the behavior of
objective function, about the presence of local minima or the location of feasible
nonfeasible regions in the multidimensional parameter space it is advisable to start
optimization process with a stochastic strategy. Stochastic methods choose their
from one or more initial configurations to the final solution(s) through the param
space using some “random factor” and they accept deterioration in the objec
function during the iteration process. This fact enables them to act more “global” i
t heir deterministic counterparts. High stability in convergence even when there is l
or no knowledge about the behaviour of the objective(s) and a rather sin
plementation complete the set of advantages. The main drawback, however, is l
umber of function evaluations. But this drawback was extremely weakened by
recent enormous increase in computer power. Furthermore, the availability of par
computer environments has promoted their applicability to real world problems
electrical engineering, since all higher order Evolution Strategies are intrinsically para
In the following sections the main features of Evolution Strategies will be discussed...
ENERGY CHARACTERISTICS AND PARAMETERS OF NON-UNIFORM (PIN-TO-PLANE) DIELECTRIC BARRIER DISCHARGE

Peter DINEFF*, Dilyana GOSPODINOVA*, Ivalina ABRAMOVA**

*Technical University of Sofia, Department of Electrical Apparatus, 1156 Sofia, 8, St. Kliment Ohridski, Bulgaria, E-mail: dineff_pdk@abv.bg; dillanang@abv.bg
**Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, 11, Acad. Georgi Bonchev” str.; E-mail: iva@svr.igic.bas.bg

Abstract. Interesting types of DBD in ambient air at atmospheric pressure for the generation of non-thermal plasma on dielectric surfaces were investigated. Pin-to-plane dielectric barrier discharge was sustained in the electrode configurations combining electrode components of both corona and DDB – metallic pins or triangle spikes electrode, situated single- or double-in-line and metallic plate electrode covered with a dielectric barrier. It was investigated experimentally the burning mode of this new discharge in ambient air. The discharge behavior with single- and double-in-line spikes high voltage electrode was discussed. The pin-to-plane DBD is a new DBD-based discharge rich in energy that produces a lot of chemically active centers on the wood surface by functionalization (oxidation).

Keywords: burning voltage, critical parameters, dielectric barrier discharge, non-uniformity, operating area, single- and double-in-line spike electrode.

INTRODUCTION

The surface properties are determined by a thin layer of molecular dimensions and can be changed without influencing the bulk properties of the low surface energy materials. Paper, fibers and other cellulosic materials are mostly characterized by non-polar chemically inert surfaces with surface energy in the 20-40 mN/m range. In general, wood (cellulosic) materials are wetted by liquids when the surface energy of the wood surface exceeds the surface energy of the liquid. The surface energy of common organic solvent is lower than that of the wood, therefore paints, inks, adhesive and impregnating solution based on organic solvents are successfully applied to wood and cellulosic materials. Environmental requirements call for a replacement by water-based paints, inks and bonding agents. Flame retardancy is accomplished by capillary impregnation with water solution containing different kind of flame retardants. Because of the high surface tension of water (72.1 mN/m) a treatment of low energy surface is necessary to improve their surface energy.

Low surface energy impedes surface contamination and allows easy cleaning, but it complicates such processing as printing, coating, sticking, impregnation, etc. Various processes have been developed for surface treatment to enhance adhesion and capillary activity, such as mechanical treatment, wet-chemical treatment, exposure to flames, and cold (non-thermal) plasma treatment in atmospheric dielectric barrier discharge (A-DBD).

![Figure 1. Electrode configurations of dielectric barrier discharge (DBD): a - pin-to-plane DBD with single-in-line spikes electrode (SILS electrode); b – pin-to-plane DBD with double-in-line spikes electrode (SILS electrode).](image)

Plasma surface treatment of dielectric surfaces at atmospheric pressure with alternative current barrier corona (AC-BC) or pin-to-plane DBD were published recently (Akishev et al, 2002; Radu et al, 2003). These discharges were sustained in the electrode configuration combining the electrode elements of both:-- a pins (spike) electrode came from corona discharge, and a plate electrode covered with a dielectric barrier came from A-DBD. The authors experimentally and theoretically investigated the burning mode of this pin-to-plane DBD in ambient air at atmospheric pressure. Diverse applications including the functionalization demand a solid physical and chemical understanding of the operational principals of such discharges.

The effect of plasma surface treatment and pre-treatment depends on the energy input into the plasma-chemical surface (or volume) process. For the energy flow on a resting substrate surface, the dosage D is used: $D = (P \cdot t) / A$, (W sek)/m² or J/m², where P is the real power introduced into the discharge, W; A is the substrate (electrode) surface, m²; and t is the process duration of the, sek. If the substrate surface is moving with linear velocity ϑ, m/sek, for the absorbed energy flow the dosage D is used: $D = P / (b \cdot \vartheta)$, J/m³, where b is the treated surface width, m. The real power P introduced into the discharge is an important parameter to achieve desired surface chemistry for the both surface material operations and it characterize the result of the chemical interaction of non-thermal plasma with the low energy treated surface.

The aim of this paper is the experimental study of energy characteristics and parameters of a special pin-to-plane DBD with different electrode configuration, Fig. 1.
EXPERIMENTAL INVESTIGATION

The pin-to-plate DBDs are typical discharges with expressed local non-uniformity closeness high-voltage electrode that consists a lot of pins (spikes) arranged the length of electrode according two way – single-in-line or double-in-line, Fig. 1a and b. An alumina profile is used for making the two studied high voltage electrode configurations with single-in-line (SILS) and double-in-line (DILS) arranged spikes, Fig. 1.

The grounded plate electrode is covered by a glass barrier (thickness: 3 mm) and separated form high electrode by a variable air gap – the inter-electrode gap distance d is varies on five levels: 3, 6, 9, 12 and 15 mm. The relevant relative inter-electrode distances toward the height of the spikes are $0.6, 1.2, 1.8, 2.4$ and 3.0. The distance between the double-in-line arranged spikes is 20 mm or 4.0 units relative to the spike height. The length of the SILS- and DILS high voltage electrodes is 130 mm. The electrodes are energized by a high voltage power supply with typical voltages in the $1+20$ kV range and industrial frequency (50 Hz), [1, 2].

Electrode configurations SILS and DILS exert strong influence on the breakdown conditions and avalanche to streamer transformation that have to modify not only the DBD’s volt-ampere characteristic, ignition U_b voltage, and critical parameters of operating sub-area, [1], but the energy effectiveness operational parameters of the operational (real power-voltage) characteristics - $P = \phi (U_{RMS}), d = \text{const}.$

The static volt-ampere characteristics of pin-to-plane DBDs have been plotted experimentally, linear polygonal discharge models have been worked out in accordance with a well known method for a minimal coefficient of linear correlation, not less than 0.9900, and then all the electrical parameters – burning voltage U_b and ignition parameters (voltage U_{ig} and current I_{ig}) of the DBDs operating areas - first and next ones, have been calculated, [2].

RESULTS AND DISCUSSION

The burning voltage U_b and ignition current I_{ig} calculated from discharge models, the real power P can be determined as a function of current I_{AVG} through the electrode configuration, or corresponding voltage drop U_{RMS} across the electrode cell, for all operating areas, [for $(I_{AVG} - I_{ig, AVG}) > 0$, or $U_{RMS} > U_{ig, RMS}$], after the next equation (Filippov-Emeljanov, 1958), Fig. 2:

$$P = U_b (I_{AVG} - I_{ig, AVG}), \text{W}.$$ \hspace{1cm} (1)

The real specific power p_0 (per one length of the high voltage electrode) is calculated from the real length of electrode configuration $L = 0.130 \text{ m}$, Fig. 3:

$$p_0 = \frac{P}{0.130}, \text{ W/m (Wpm)}.$$ \hspace{1cm} (2)

Figure 2. Families of energy efficiency characteristics of pin-to-plane DBDs $p_0 = f(U_{RMS}), d = \text{const}$, with electrode configuration: a – single-in-line spikes (SILS-) electrode; b – double-in-line spikes (DILS-) electrode.
The real specific power \(p_s \) (per one spike of the high voltage electrode) was calculated from the real number of the investigate electrode configuration:

- for **single-in-line electrode configuration** the number of spikes is 200 spikes per meter, Fig. 3a:

\[
p_s = \frac{P_0}{200}, \text{ W per spike (Wps);}
\]
(3)

- for **double-in-line electrode configuration** the number of spikes is 400 (two rows with 200 spikes per meter) spikes per meter, Fig. 3b:

\[
p_s = \frac{P_0}{400}, \text{ W per spike (Wps).}
\]
(4)

The real specific power \(p_s \) (per one meter of electrode length) of **pin-to-plane DBD** increases when the number of spikes is double by adding a new row of spikes to the existing one at the distance of 20 mm (or four times the height of the spike). But the growth of the real power \(p_s \) is very different – for example, the growth is from 30 mWpm to 64 mWpm (6 mm, 15 kV); and other example: the growth is from 46 mWpm to 66 mWpm (3 mm, 15 kV), Fig. 3.

The real specific power \(p_s \) (per one spike of pin-to-plane DBD) in general decreases when the number of spikes is doubled – for example, the diminution is from 180 mWpm to 130 mWpm (3 mm, 15 kV); and other example: the diminution is from 160 mWpm to 130 mWpm (12 mm, 15 kV), i.e. the current spike loading \(p_s \) decrease when the linear real specific power \(p_0 \) increase by adding one parallel row of spikes or realizing the double-in-line spikes high voltage electrode pin-to-plane, Fig. 4.

It exists an interaction between the local spike microdischarges of adjacent spike lines at relatively large distances – four times the height of particular spike, for the different distances between electrodes, Fig. 4. If this examination will be applied for unit length of the electrode configuration (per one meter) then DILS-configurations has its advantage - the specific discharge real power \(P \) is higher with more than 50%.

Ordinary the external volt-ampere characteristics of **plane-to-plane (co-planar) DBDs** are represented by polygonal linear models with tree sub-areas that correspond with the main development stages of discharges - the stage preceding the DBDs ignition, (non-operating area); and the first and the next stages of burning DBDs (operating area with its sub-areas). The external volt-ampere characteristics of pin-to-plane DBDs at low inter-electrode distances are represented by polygonal linear models with more than three sub-area. By analogy, the energy efficiency or the technological characteristic of pin-to-plane DBDs \(p_s = f(d) \) or \(P_s = \phi(d) \), \(U_{\text{RMS}} = \text{const} \), are presented by polygonal linear models with more than two operating sub-area.

The generalized real power model of pin-to-plane DBDs burning has the following special feature common for all DBD-based discharges:

i) the pin-to-plane DBD burns at a constant burning voltage, i.e. \(U_b = \text{const} \), but the inter-electrode distance \(d \) does not significant influence on the change of the burning voltage and the real power \(P \);
ii) the ignition of pin-to-plane DBD or the transitions to a new operating area are threshold processes occurring for certain critical parameters – ignition voltages and currents (U_g and I_g) - but the inter-electrode distance d does not significantly influence on the change of the critical parameters U_g and I_g and the real power P;

iii) the pin-to-plane DBD have to be described by the linear relationship between the real power P and the RMS value of voltage – the coefficient of the linear correlation gets values above 0.9900 at low inter-electrode distances – $d \in [3 \div 15]$ mm or $d^* = d/L \in [0.6 \div 3]$. This model is based on the following linear equation for all operating areas - $P = D \cdot U_{RMS} + C$, where D is the slope, W/V, and C– the intercept of the geometric line, W.

XPS– measurements have been used to study the resulting plasma-chemical modifications on the polymer surface. XPS analysis in this work was carried out using an XPS spectrometer VGS ESCALAB Mk II with Al Ka x-ray radiation ($h\nu = 1486.6$ eV; $FWHM = 0.5$ eV), XPS instrument use soft x-ray (200÷2000 eV) radiation to examine core-levels. The angle between the incident X-ray vectors and the observation (fixed by analyzer entrance slit) was 50’. Used instrument accept samples: 10 x 10 mm. The minimum analysis area ranges from 10 to 200 micrometers (μm).

XPS– analysis is a surface chemical analysis technique that can be used to analyze the surface chemistry of a material in its “as received” state, or after some treatment such as non-thermal plasma with pin-to-plane DBDs (only for one minute), for example. XPS detects all elements with an atomic number (Z) of 3 (lithium) and above. This limitation means that it cannot detect hydrogen (Z=1) or helium (Z=2). Detection limits for most of the elements are in the parts per thousand ranges (0.1 atom % = 1 part per thousand = 1000 ppm).

Table 1. XPS– surface chemical analysis of surface plasma-chemically treated heart wood samples.

<table>
<thead>
<tr>
<th>Douglas-fir Wood Samples After DBD Plasma Treatment</th>
<th>Operational Voltage Area Above U_g, kV</th>
<th>RMS Voltage U_{RMS}, kV</th>
<th>Specific Real Power P, W/pm²</th>
<th>Wood Surface Composition (1±5 nm usually), at.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin-to-plane DBD</td>
<td>6.628</td>
<td>7.0</td>
<td>201.900</td>
<td>76.5</td>
</tr>
<tr>
<td>No.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.2</td>
<td>9.5</td>
<td>835.400</td>
<td>83.0</td>
<td>16.8</td>
</tr>
<tr>
<td>No.3</td>
<td>10.776</td>
<td>11.0</td>
<td>1230.000</td>
<td>88.9</td>
</tr>
<tr>
<td>Co-planar DBD</td>
<td>7.000</td>
<td>10.0</td>
<td>2.565</td>
<td>68.3</td>
</tr>
<tr>
<td>No.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.5</td>
<td>11.920</td>
<td>15.0</td>
<td>56.037</td>
<td>69.1</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.6</td>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
</tr>
</tbody>
</table>

Figure 4. Families of technological pin-to-plane DBDs characteristics $p_e = \varphi(d)$, $U_{RMS} = const$, of the two investigated electrode configurations: a – single-in-line spikes (SILS) electrode; b – double-in-line spikes (DILS) electrode.
The presence of peaks at particular energies indicates the presence of a specific element in the sample under study - furthermore, the intensity of the peaks or the area under the peaks is related to the concentration of the element within the sampled region. Thus, the technique provides a quantitative analysis of the surface composition and in sometimes known by the alternative acronym, ESCA (Electron spectroscopy for chemical analysis).

Atoms of a higher positive oxidation state exhibit a higher binding energy due to the extra coulombic interaction between the photo-emitted electron and the ion core, Fig. 5.

This ability to discriminate between different oxidation states and chemical environments is one of the major strengths of the XPS technique.

As a result of the XPS measurements investigations the following main conclusions can be derived: i) the quantitative analysis of the surface composition shows that the main result of the plasma-chemical surface interaction is expressed by the different oxidation states C2, C3 and C4 of carbon; ii) the behavior of the co-planar DBD

CONCLUSIONS

The present research formulates the problem of the pin-to-plane electrode configuration or the influence of the local non-uniformity of electrical field on the elementary processes in cold non-equilibrium plasmas, external electric characteristics and energy efficiency parameters. The pins-to-plane DBDs burns in every operating sub-area at constant burning voltages U_b, and the real power P is a linear function of RMS voltage drop across the electrodes. The linear functional subordination between the real power and RMS voltage is a distinguishing feature for all the DBDs. The pins-to-plane DBDs with higher energy suggest the through likely oxidation states of carbon at 286.7, 288.4 and 289.4 eV. It is one new different but very effective instrument for surface functionalization (oxidation) of wood (Douglas fir).

REFERENCES

NON-EQUILIBRIUM AIR DISCHARGE DEVICE FOR PLASMA-CHEMICAL FUNCTIONALIZATION

Peter DINEFF, Dilyana GOSPODINOVA, and Momchil SHOPOV

Technical University of Sofia, Department of Electrical Apparatus, 1156 Sofia, Bulgaria, E-mail: dineff_pd@abv.bg; dilianang@abv.bg

Abstract. New types of AC dielectric barrier discharges in ambient air (at atmospheric pressure and room temperature) for plasma-chemical functionalization of low-energy surfaces were investigated. A combination between dielectric barrier discharge (DBD) at low (in vacuum), and high (atmospheric) pressure, was sustained in an electrode configuration combining electrode components of both – spiral electrode into a quartz (dielectric barrier) tube under low pressure in argon, and second spiral electrode outside tube in ambient air. It was investigated experimentally the burning behavior of this low-high pressure DBD. The low-high pressure DBD behavior under different pressure in so called vacuum electrode (argon) was discussed.

Keywords: burning voltage, critical parameters of ignition, dielectric barrier discharge, and low-high pressure dielectric barrier discharge.

INTRODUCTION

Low-temperature non-equilibrium plasmas are effective tools for surface treatment of various materials in micro-electronics, manufacturing and other modern industrial applications. The plasma-chemical surface influence of atmospheric pressure discharge presents advantages such as plasma treatment with cheap gas mixture or air, low specific energy consumption and short processing time.

Functionalization leads to formation of functional groups on the surface by chemical reaction between gas-phase species (Chan, 1994). Functionalization change, but mostly improves the wettability, the adhesion, lamination to other film, the printability and other coating applications, the capillary activity and impregnation of porous media (Dineff, 2004). In reality these different processes are not strongly separated, e.g. functionalization may include cleaning and sputtering. The depth scale of different processes are as follows: etching – 10+100 nm; functionalization – 1+5 nm, and coating – 10+1000 nm (Behnisch, 1994). The efficiency of various plasma components in surface functionalization is very different: ions and neutrals (kinetic energy: ~ 10 eV) components that cause chemical interactions in depth (monolayer); reactive neutrals (thermal energy: 0.05 eV) – chemical surface reactions and functional groups formation (depth: monolayer); electrons (kinetic energy: 5+10 eV) – surface ionization and dissociation (depth: ~ 1 nm); photons (VUV: > 5 eV; UV: < 5 eV) – photochemical and secondary processes (depth: micron range).

The dielectric barrier discharge (DBD) seems to be the most promising plasma source for plasma-assisted treatment of polymer (and wooden) surfaces at atmospheric pressure. Investigations of the filamentary or dispersive DBD (Behnke, 1996; Dineff et al., 1999; Massines, 2001; Sonnenfeld, 2001) proved the applicability of DBD for surface treatment techniques.

The effect of plasma chemical treatment depends on the real energy E (W sek) or the real power P (W) input into the process: \(E = Pt\), where \(t\) is the duration of the treatment, sek. For energy flow on an immobile substrate immersed in the discharge plasma, the dosage \(D = (Pt) / A\) was used, \(1 / cm^2\), where \(A\) is the electrode surface, \(cm^2\). In this way for energy flow on the barrier surface of a surface DBD, fig. 2a, the dosage \(D\) was used similarly, but \(A\) is the quartz barrier surface. The dosage is proportional to real power \(P\). The real power is an important parameter of DBD to achieve desired surface chemistry or the quantity of gaseous product.

![Figure 1. Burning voltage \(U_b\) of AC DBD in coplanar electrode configuration at electrode distance 0.6 cm and compensated edge effect as a function of pressure \(p\), and Paschen's law (curve) for DC breakdown voltage \(U_{bd}\) in dry air, where \(p\) is the pressure, Pa; \(d\) – distance between electrodes, cm. Special applications of DBD under low pressure (in vacuum) exist – the burning voltage drop across the inter-electrode gap is constant too during the discharge burning: \(U_b = \text{const.}\) The experimental results, presented by [1], enable as to show the burning voltage \(U_b\) of a DBD in coplanar electrode configuration as a function of the pressure, and to compare it with the breakdown voltage \(U_{bd}\) of dry air and argon (Ar), fig. 1.](image-url)
The aim of this paper is the experimental investigation on the ignition and the burning behavior of a new type of AC DBD in ambient air at atmospheric pressure and room temperature for plasma-chemical functionalization of low-energy (polymeric) surfaces, Fig. 3.

LOW-HIGH PRESSURE DIELECTRIC BARRIER DISCHARGE

A combination between vacuum DBD burning at low pressure (under 1 000 mbar), and atmospheric DBD burning under high pressure, was sustained in an electrode configuration combining electrode components of both - spiral electrode into a quartz tube (quartz dielectric barrier) was immersed in argon under low pressure. Second spiral electrode was arranged on the tube surface immersed in ambient air. It experimentally was investigated the ignition and burning behavior of this low-high pressure DBD (LHP DBD). The LHP DBD behavior under different pressure in so called vacuum electrode (under argon) was discussed. We take the view that the LHP DBD is a combination of two serially powered DBDs that burn in co-axial cylindrical electrode configuration, Fig. 2c: the first DBD burns among the windings of an external spiral electrode in ambient air at atmospheric (high) pressure, Fig. 2a; the second DBD burns among the windings of an internal spiral electrode in argon under low pressure, Fig. 2b. The internal spiral electrode and the closed quartz tube under low pressure constitute the so called tubular vacuum electrode, Figs. 2d and e. Vacuum tubular electrodes with straight electrode was produced and investigated too, Fig. 2f.

Surface plasma activation (SPA) device with one surface-plasma activation applicator was produced for Shenyang institute of chemical technology (Liaoning, China) and was investigated, Fig. 2g. The applicator holds two vacuum tubular electrode powered on $U_{pa} = 7$ kV at 30 kHz, Fig. 2h.

Vacuum tubular electrodes under different low-pressure have been made purposely for this project by European Lighting Industry Ltd., Sliven, Bulgaria.

EXPERIMENTAL INVESTIGATION

The atmospheric low frequency DBD electrode configuration consists of two cylindrical co-axial electrodes separated by a dielectric barrier - the internal electrode is made as a metallic tube, and the other - as a spiral on the surface of the quartz tube, Fig. 2a. The edge effect is as usually detached by the geometry of electrodes.

The vacuum low frequency DBD electrode configuration consists of two cylindrical co-axial electrodes separated by a dielectric barrier - the internal electrode is made as a spiral on the inside surface of the tube, and the external - as a metallic tube, Fig. 2b. The combined low–high pressure DBD electrode configuration consists of two cylindrical co-axial spiral electrodes arranged at the two side of the quartz tube - internal and external, Fig. 2c.

Figure 2. Schematic of the electrode configurations of low-high pressure dielectric barrier discharges: a - typical co-axial cylindrical electrode configuration of dielectric barrier discharge (DBD) with external spiral earthed electrode at high (atmospheric) pressure; b - co-axial cylindrical electrode configuration of DBD with internal spiral electrode at low (in vacuum) pressure; c - combined low and high pressure DBD with vacuum tubular electrode; d and e - vacuum tubular electrodes including an internal spiral metal electrode and a tubular quartz barrier under vacuum inside; f - vacuum tubular electrode with straight internal metal electrode; g - surface plasma activation (SPA) device with surface plasma activation applicator, made for Shenyang Institute of Chemical Technology, Liaoning, China; h - plasma activation applicator (PA4) with two vacuum electrodes. Vacuum electrodes have been made purposely for this project by European Lighting Industry Ltd., Sliven, Bulgaria.

The dielectric tube is filled with argon under low pressure. The pressure range is: 1, 100, 200, 400, 800, and 900 mbar. The electrodes are energized by a high voltage.
power supply with typical voltages in the 1-20 kV range and industrial frequency (50 Hz).

The electrode geometry and the different pressures inside and outside the quartz barrier need a difference in microdischarges self-organization, and “crystal” patterns in DBDs burning at different pressure. The pressure has to exert strong influence on the breakdown voltages \(U_{bd} \) in air and argon, Fig. 1, and avalanche to streamer transformation that have to modify the DBD’s volt-ampere characteristic, burning \(U_b \) voltage, Fig. 1, and critical parameters of operating area - ignition voltage \(U_{ig} \) and current \(I_{ig} \). We believe that the change of argon pressure inside quartz tube will give rise to the typical influence on electrical characteristics, critical or ignition parameters, and real power of LHP DBDs.

RESULTS AND DISCUSSION

The statical external, or volt-ampere, characteristics \(I_{AVG} = f (U_{RMS}) \) of LHP DBDs for different argon pressure (\(p = const \)) in the quartz tube have been plotted experimentally, Fig. 3a. The data are shown replotted as current-pressure characteristics \(I_{AVG} = f (p_a) \) at \(U_{RMS} = const \). The change of discharge currents \(I_{AVG} \) forms an area of argon pressures that correspond to effective chemical process with large discharge currents and corresponding real power in the two DBD cold plasma volumes – inside and outside of the vacuum high voltage electrode, Fig. 3b.

Linear polygonal discharge models have been worked out in accordance with [2], for a minimal coefficient of linear correlation, not less than 0.9900, and then all the electrical parameters of the DBD operating areas have been calculated and figured as function of argon pressure – burning voltage \(U_b, \) RMS, Fig. 4, ignition or critical voltage \(U_{ig,RMS} \) and ignition current \(I_{ig,AVG} \), Fig. 5.

The real power of LHP DBDs is given by (Filippov and Emelianov, 1958):

\[
P = U_{b, RMS} \left(I_{AVG} - I_{ig, AVG} \right).
\]

The real power \(P \) was figured as a function of argon pressure \(p \) at \(U_{RMS} = const \). An interesting for the plasma-chemical functionalization area of power efficiency was formulated between 400 and 800 mbar: the real power \(P \) in this interval of argon pressure is higher - more two times above, than other pressures, Fig. 6.

From an operational viewpoint, the higher real power \(P \) correspond to higher discharge current \(I_{AVG} \) or the high real powers require high discharge currents. No other DBD configuration studied to date shows such a behavior – most DBD configurations studied show that the burning voltage \(U_{b, RMS} \) and the ignition current \(I_{ig, AVG} \) have the important influence on real power \(P \). Figures 4a and 5b show weak burning voltage and ignition current deviations as a function of argon pressure for a large interval of pressure change. The change of argon pressure \(p \) in the vacuum high voltage electrode has not significant influence on the burning voltage and the ignition parameters of LHP DBD but it increases the real power \(P \) by increasing the discharge current \(I_{AVG} \), Figs 3b and 6.

Figure 3. Statical volt-ampere characteristic \(I_{AVG} = f (U_{RMS}) \) at \(p = const \) (a) of co-axial cylindrical spiral electrode configuration of DBD with vacuum electrode under low pressure \(p \) inside (argon), and ampere-pressure characteristic \(I_{AVG} = \phi (p) \) at \(U_{RMS} = const \) (b). The area of power efficiency presents conditions for capacity real power.
Figure 4. Burning voltage U_b of dielectric barrier discharge as a function of pressure p:
- VES - co-axial cylindrical spiral electrode configuration of DBD with vacuum electrode under low pressure p inside (argon);
- CES - co-planar electrode configuration of DBD with inter-electrode gap low pressure p (air) and VES - the co-axial cylindrical spiral electrode configuration of DBD.

In order to characterize the increasing of real power of LHV DBD, a supposition was suggested: the DBD in argon under low pressure plays the leading part as an efficient UV-radiation source for the going ionizing and chemical processes in atmospheric plasma, and the atmospheric DBD plays the same part for the going ionizing and chemical processes in vacuum non-equilibrium and non-thermal plasma. If the pressure of argon in vacuum tube is varied the UV-radiation across the quartz tube exert influence on the going ionizing and chemical processes in atmospheric plasma: the manifestation of this influence was studied experimentally.

Figure 5. Ignition (or critical) parameters of a co-axial cylindrical spiral electrode configuration of DBD: a - ignition voltage U_{ig} of DBD; and b - ignition discharge current I_{ig} of DBD as a function of pressure p (argon).

CONCLUSIONS

As a result of the experimental investigations of LHP DBD with co-axial spiral electrodes, the following main conclusions can be derived:
The method of mathematical description of DBD static volt-ampere characteristics by linear polygonal models is applicable to the LHP DBDs. The coefficient of linear correlation gains values about unity: from 0.9978 to 0.9985 for different argon pressure. There is a strong linear functional subordination between the average of discharge currents and the RMS of voltages.

The present experimental research formulates the problem of the vacuum electrode pressure (argon) influence on the elementary processes in cold non-equilibrium and non-thermal plasmas, external electric characteristics and power efficiency parameters.

ACKNOWLEDGEMENT

The financial support of the National Science Fund, Ministry of Education and Science of Bulgaria, for the Research Project DO-02-11: EF/2009 is gratefully acknowledged.

REFERENCES

