ANNUAL JOURNAL OF ELECTRONICS

Technical University of Sofia

Faculty of Electronic Engineering and Technologies

Denisliev, K. H., I. F. Ivanov, MEMS Generators for Microdroplets

Kolev, G. D., K. H. Denisliev, S. D. Bobeva, Design and Analyzing of Silicon Diaphragm for MEMS Pressure Sensors


Vervenne, I., J. Catrysse, G. Deconinck, Comparison of Reliability Prediction Analysis and HALT of an Electronic System

Milanov, P. M., N. G. Kenarov, FPGA Platform for Support Digital and Mixed-signal Design Development

Farkov, G. A., M. Camminadi, Approaches for Automated PCB Measurements


Andonova, A. V., S. V. Todorov, Buried Objects Detection by Thermography

Andonova, A. V., A. P. Radev, Degradation Analysis for Light Emitting Diodes

Peuteman, J., J. Baert, R. De Craemer, P. Knapo, Implementing DSP Course Modules with Multimedia Oriented Projects

Shoikova, E. D., M. J. Krumova, *O*NET and Competency Based Education

Shoikova, E. D., M. J. Krumova, Overview of the Occupational Information Network

Ivanova, M. S., J. Alam, Wave for Personal Learning Network Forming and for Collaborative Knowledge Transfer

Vasileva, T. K., V. P. Tchoumatchenko, Knowledge Practices Laboratory

Kostadinov, A. N., Using Logisim and MiSim DE Software Tools in the Digital Logic and Microprocessor Design Subject

Spasova, N. V., Implementing an Electronic System for Assessment in Engineering Education

Peuteman, J., P. Devlies, J. Knockaert, G. Vandecasteele, T. Verbeerst, I. Vervenne, Laboratory Setup for Teaching Reflection Phenomena between a PWM Inverter and an Induction Motor

Yankov, P. V., V. C. Valchev, Power/Frequency Characteristics of Passive Controlled Wind Turbines with Additional Reactive Components in the Circuitry

Valchev, V. C., P. V. Yankov, Improvement on Passive Controlled Wind Turbines Schematics and Obtaining Power/Frequency Curves


Vuchev, A. S., N. D. Bankov, G. P. Terziyski, Analysis of LCC Resonant DC-DC Converter with Capacitive Output Filter


Mareva, D. J., D. D. Yudov, E. M. Marev, Inverter for Induction Heating of Fluids

Investigation of Nanostructured Objects Using Cross-section Techniques

Valentin Hristov Videkov, Georgi Aleksandrov Farkov, Boryana Rangelova Tzaneva and Igor Alfonsovich Vrublevski

Abstract - The article represents possibilities for investigation of nanostructured objects parameters using cross-section preparation. Described are the most important process parameters and its possibilities. Stated are the investigation results of several objects based on nanostructured oxide at different preparation steps.

Keywords: nanostructured materials, cross-section preparation, microscope observation

I. INTRODUCTION

In the last ten years have been published a great number of articles concerning nanotechnologies and their application [1]. Nanotechnologies can be used for realization of direct functional devices, as nanoelectrical components [2] or nanomanipulators [3], as well as constructive materials. As constructive material nanocomposite [4] one could point e.g. nanostructured anode oxide of aluminum [5].

In every case it is necessary to investigate the parameters of these materials. Investigation methods that are mostly used in nanomaterial analysis are electron microscopy [6] and atomic force microscopy [7]. There are also cases where micro parameters of nanomaterials should be examined. A technique of cross-section preparation, which is used in such cases, is described in the article below.

II. CONVENTIONAL METHOD FOR CROSS-SECTION PREPARATION

The technology of cross-section preparation includes specimen preparation, reliable fixing in desired position and resin moulding in special mounting cups. A complete moulded sample is shown on Figure 1.

As a moulding material in most cases acrylic or epoxy resins are used. After the required curing time and extraction of the moulding the preparation process includes plane and fine grinding, and polishing. During the grinding process special grinding papers (SiC) are used with grit size between P180 and P4000. Usually at this step it is enough to use water as a cooling agent. There is a large variety of consumables, that can be used instead of conventional SiC papers [8].

Most of them are more expensive, but have excellent improved properties as absolute planeness, lack of edge rounding and relief. The final step of the mechanical preparation is polishing. Normally it is done in the same way as grinding, but on a special polishing clothes and use of diamond pastes/suspensions (6µm to below 1µm). Different types of lubricants are available. Another important issue is the mechanical preparation process parameter as push force, rotates per minute and rotating direction. Finally the cross-section is observed on a light microscope at magnifications 50x-1000x. Figure represents a cross-section for evaluation of intermetallic phases.

3,1 µm

FIGURE 1. SPECIMEN MOULDED IN MOUNTING CUP

FIGURE 2. EVALUATION OF INTERMETALLIC PHASES
III. PARAMETERS OF NANOSTRUCTURED MATERIALS

For nanostructured materials we can define electrophysical and physical-mechanical parameters. Electrophysical parameters are for example electrical conductivity, permeance and permittivity. Physical-mechanical parameters are hardness, density etc. Sometimes it is necessary to perform comparatively fast analysis for nanocoating thickness, deformation etc. It is interesting to know, what is the variation of thickness at different grinding/polishing steps, as well as the vertical distribution. Scope of interest can be also the data for the layers of nanostructured materials one can obtain using metallographic cross-section.

IV. METALOGRAPHIC CROSS-SECTION OF NANOSTRUCTURED MATERIALS

To evaluate the possibilities of cross-section process and define nanostructured material parameters we will focus on anode oxide of aluminum. Its formation is as a porous material with pores in range 50 - 200 nm. Figure 3 represents a typical structure of that oxide.

![Figure 3. Structure of aluminum anode oxide](image)

To examine the influence of preparation method different specimens have been moulded in a single cup. Figure 4 represents sample that have been treated with SiC grinding paper P320. Moulded are aluminum base, selective grown nanoporous oxide base, nanoporous oxide with grown copper layer, membrane and membrane with metal core.

![Figure 4. Cross section after grinding with SiC paper P320](image)

On the picture taken in macro mode (2cm), traces caused by the grinding process are evident. Some additional grinding steps have been performed with papers up to P4000. Polishing has been performed using series of different diamond polishing suspensions in the range 6um - 1 um.

For the evaluation of process results it is also important to use appropriate observation method. On a microscope with reflected light two modes are mainly used - bright field (when the surface is illuminated perpendicular) and dark field (the surface is illuminated at angle). Dark field is the proper mode when rough surfaces are observed or to find traces over mirror surfaces.

V. EXPERIMENTAL RESULTS

Figure 5 represents comparison of complex specimen after one and the same process step, but different observation method.

![Figure 5. Evaluation of cross-section using different observation method.](image)

Area A is observed in bright field mode and area B in dark field mode. Position 1 is an aluminum, position 2 is nanoporous oxide with grown copper. Position 3 is electrochemical layer of copper. The surface has been treated with diamond suspension 1 um and the image magnification is x500. Depending of the material hardness [9] there is a different level of smoothness and distinguishing ability. Different material outlines are easily distinguished.

Copper inclusions in oxide pores has different distinguishing in bright field and dark field modes. It is necessary to use color observation.

Figure 6 represents a comparison of surface at different process steps.
Observed are layer of electrochemical copper, nanoporous oxide and aluminum. Area A is prepared with SiC grinding paper P1200, and area B is polished with diamond suspension of 3 µm.

It is interesting in this case, that the distinguishing of material outline is better during grinding process. A explanation for that effect can be lower level of smearing.

The role of magnification used for examination of material details is shown on Figure 7. To determine the grow profile of pure nanoporous oxide, high magnification has to be used.

The shown specimen is a profile of porous oxide grown using mask of own oxide.

Figure 8 represents cross-section of nanostructured oxide membrane with metal core having thickness of 0.5 µm. On the picture it is clearly visible the different oxide structures, which is grown without preliminary fuze preparation.

In the article have been presented experimental results from cross-sectioning of different nanostructured materials. Different levels of preparation as well as different modes of observation have been applied. Shown is that when using appropriate observation mode, magnification and preparation, microparameters of nanostructured materials can be evaluated. For improved results further investigations are necessary with levels of polishing below 1 µm. Also the parameters of the moulding can be optimized – different coefficient of deformation and viscosity of resins.

REFERENCES

[9] Struers Metalog Guide