organized by

Faculty of Communications and Communication Technologies
Technical University of Sofia, Bulgaria

Faculty of Technical Sciences
University “St. Kl. Ohridski”, Bitola, Macedonia

Faculty of Electronic Engineering
University of Niš, Serbia and Montenegro

with support of

- Union of Scientists in Bulgaria
- Ministry of Transport and Communications
- Bulgarian Telecommunication Company
- Ericsson Telecommunication Bulgaria

in co-operation with

- IEEE Bulgaria Section
- IEEE Macedonia Section
- IEEE Serbia and Montenegro Section
The ICEST Conference appears to succeed a series of conferences started from 1963 at the Technical University of Sofia under the name “Day of the Radio”. In 1977 the name of the Conference was changed into “Communication, electronic and computer systems”.

Since 2000 it has become an international conference under the name EIST (Energy and Information Systems and Technologies). The first two EIST Conferences were organized by the Faculty of Communications and Communication Technologies, Sofia and the Faculty of Technical Sciences, Bitola.

In 2002 the Faculty of Electronic Engineering, Niš joined successfully the Conference organizers. Again, the Conference changed its name becoming ICEST (International Scientific Conference on Information, Communication and Energy Systems and Technologies).

This year the host of the ICEST Conference is the Faculty of Communications and Communication Technologies, Sofia.

HONORARY COMMITTEE

O. Kouzov
Ministry of Transports and Communications

Iv. Spasov
Bulgarian Telecommunication Company

R. Engman
Ericsson Telecommunications, Bulgaria

V. Botusharov
Ericsson Telecommunications, Bulgaria

P. Antonov
IEEE Communication Chapter Chair

S. Bogdanova
IEEE SP Joint Chapter Chair

J. Kolev
IEEE SSC/ED Chapter Chair

G. Mollova
IEEE SP Joint Chapter Member

Ph. Philipov
IEEE MTT/ED/AP/CPMT Chapter Chair

V. Sgurev
IEEE SC/IM/SMC Chapter Chair

S. Stojtchev
IEEE Computer Chapter Chair
General Chairman:
R. Arnaudov
Technical University of Sofia, Bulgaria

Vice Chairmen:
B. Milovanović
University of Niš, Serbia and Montenegro
C. Mitrovski
University “St. Kliment Ohridski” – Bitola, Macedonia

Members:

E. Altimirski
Technical University of Sofia, Bulgaria
A. Bekiarski
Technical University of Sofia, Bulgaria
G. Dimirovski
University of Skopje, Macedonia
B. Dimitrijević
University of Niš, Serbia and Montenegro
D. Dimitrov
Technical University of Sofia, Bulgaria
R. Dinov
Technical University of Sofia, Bulgaria
D. Dobrev
Technical University of Sofia, Bulgaria
N. Dodov
Technical University of Sofia, Bulgaria
E. Ferdinandov
Technical University of Sofia, Bulgaria
H. Hristov
Technical University of Sofia, Bulgaria
M. Hristov
Technical University of Sofia, Bulgaria, IEEE CAS Chapter Chair
L. Jordanova
Technical University of Sofia, Bulgaria
M. Kaneva
Technical University of Sofia, Bulgaria
A. Kirij
Technical University of Sofia, Bulgaria
R. Kountchev
Technical University of Sofia, Bulgaria
S. Lishkov
Technical University of Sofia, Bulgaria
P. Merdjanov
Technical University of Sofia, Bulgaria
B. Milovanović
University of Niš, Serbia and Montenegro
S. Mirtchev
Technical University of Sofia, Bulgaria
M. Momtchejikov
Technical University of Sofia, Bulgaria
I. Nedelkovski
University “St. Kl. Ohridski” – Bitola, Macedonia
L. Nikoloski
IEEE Macedonia Section Chair
H. Oskar
Technical University of Sofia, Bulgaria
B. Pankov
Technical University of Sofia, Bulgaria
E. Pentcheva
Technical University of Sofia, Bulgaria
A. Popova
Technical University of Sofia, Bulgaria
V. Poulkov
Technical University of Sofia, Bulgaria
D. Sotirov
Technical University of Sofia, Bulgaria
B. Spasenovski
University of Skopje, Macedonia
M. Stefanović
University of Niš, Serbia and Montenegro
N. Stojadinović
IEEE Serbia and Montenegro Section Chair
D. Stojanović
University of Niš, Serbia and Montenegro
M. Stojcev
University of Niš, Serbia and Montenegro
I. Stojanov
University Polytechnica, Bucharest, Romania
G. Stoyanov
IEEE Bulgaria Section Chair
St. Tabakov
Technical University of Sofia, Bulgaria
Lj. Trpezanovski
University “St. Kl. Ohridski” – Bitola, Macedonia
K. Zaharinov
Technical University of Sofia, Bulgaria
L. Zieleznik
Brookes – Oxford University, UK
ORGANIZING COMMITTEE

Chairman:
D. Dimitrov
Technical University of Sofia, Bulgaria

Members:

S. Bekiarska
Technical University of Sofia, Bulgaria

L. Lubih
Technical University of Sofia, Bulgaria

D. Dimitrov
Technical University of Sofia, Bulgaria

G. Marinova
Technical University of Sofia, Bulgaria

I. Dochev
Technical University of Sofia, Bulgaria

R. Mironov
Technical University of Sofia, Bulgaria

V. Georgieva
Technical University of Sofia, Bulgaria

T. Mitsev
Technical University of Sofia, Bulgaria

G. Goleva
Technical University of Sofia, Bulgaria

E. Pentcheva
Technical University of Sofia, Bulgaria

D. Dimitrov
Technical University of Sofia, Bulgaria

P. Petkov
Technical University of Sofia, Bulgaria

I. Dochev
Technical University of Sofia, Bulgaria

A. Popova
Technical University of Sofia, Bulgaria

V. Georgieva
Technical University of Sofia, Bulgaria

P. Petkov
Technical University of Sofia, Bulgaria

L. Lubih
Technical University of Sofia, Bulgaria

A. Tsenov
Technical University of Sofia, Bulgaria

CONFERENCE SECRETARIAT

V. Georgieva
Technical University of Sofia, Bulgaria

L. Lubih
Technical University of Sofia, Bulgaria

Faculty of Communications and Communication Technologies
Kl. Ohridski Blvd. 8, 1000, Sofia, Bulgaria
Phone: (+359 2) 965 3998; Fax: (+359 2) 965 3095; E-mail: icest@tu-sofia.bg

CONFERENCE INTERNET SITE

For further information, please visit the Conference Internet Site: http://radio.tu-sofia.bg/icest
LIST OF ICEST 2003 REVIEWERS

Prof. Dr. Altimirski, Emil
Technical University of Sofia, Bulgaria

Prof. Dr. Andonova, Anna
Technical University of Sofia, Bulgaria

Prof. Dr. Angelov, Angel
Technical University of Sofia, Bulgaria

Prof. Dr. Arnaudov, Rumen
Technical University of Sofia, Bulgaria

Prof. Dr. Bekiarski, Alexander
Technical University of Sofia, Bulgaria

Prof. Dr. Bichev, Georgi
Technical University of Sofia, Bulgaria

Prof. Dr. Bumbarov, Ognyan
Technical University of Sofia, Bulgaria

Prof. Dr. Darjanov, Petar
Technical University of Sofia, Bulgaria

Prof. Dr. Demirev, Vesselin
Technical University of Sofia, Bulgaria

Prof. Dr. Dimitrov, Damian
Technical University of Sofia, Bulgaria

Dr. Dimitrov, Marin
Bulgarian Academy of Sciences

Prof. Dr. Dineff, Peter
Technical University of Sofia, Bulgaria

Prof. Dr. Dinov, Rangel
Technical University of Sofia, Bulgaria

Prof. Dr. Djamiykov, Todor
Technical University of Sofia, Bulgaria

Prof. Dr. Dobrev, Dobri
Technical University of Sofia, Bulgaria

Prof. Dr. Dodov, Nikola
Technical University of Sofia, Bulgaria

Prof. Dr. Sc. Ferdinandov, Ervin
Technical University of Sofia, Bulgaria

Prof. Dr. Gadjeva, Elisaveta
Technical University of Sofia, Bulgaria

Prof. Dr. Goranov, Petar
Technical University of Sofia, Bulgaria

Prof. Dr. Sc. Hristov, Hristo
Technical University of Sofia, Bulgaria

Dr. Hristov, Hristo R.
Bulgarian Academy of Sciences

Dr. Iliev, Ilia
Technical University of Sofia, Bulgaria

Dr. Ivanov, Emil
Todor Kableshkov Higher School of Transport – Sofia, Bulgaria

Prof. Dr. Ivanov, Todor
University “Assen Zlatarov”, Burgas, Bulgaria

Prof. Dr. Sc. Kountchev, Rumen
Technical University of Sofia, Bulgaria

Prof. Dr. Lazarov, Vladimir
Technical University of Sofia, Bulgaria

Prof. Dr. Lishkov, Slavcho
Technical University of Sofia, Bulgaria

Prof. Dr. Maltchev, K.
Technical University of Sofia, Bulgaria

Prof. Dr. Markovic, Vera
University of Nis, Serbia and Montenegro

Prof. Dr. Merdjanov, Pavel
Technical University of Sofia, Bulgaria

Prof. Dr. Mihov, Georgy
Technical University of Sofia, Bulgaria

Prof. Dr. Milovanovic, Bratislav
University of Nis, Serbia and Montenegro

Prof. Dr. Mirchev, Seferin
Technical University of Sofia, Bulgaria

Prof. Dr. Mitrovski, Cvetko
Faculty of Technical Sciences, Bitola, Macedonia

Prof. Dr. Momchedjikov, Michael
Technical University of Sofia, Bulgaria

Prof. Dr. Nikolic, Zorica
University of Nis, Serbia and Montenegro

Prof. Dr. Nikolov, Dimitar
Technical University of Sofia, Bulgaria

Dr. Nikolov, Tashko
Technical University of Sofia, Bulgaria

Prof. Dr. Pankov, Borislav
Technical University of Sofia, Bulgaria

Prof. Dr. Pentcheva, Evelina
Technical University of Sofia, Bulgaria

Prof. Dr. Peric, Zoran
University of Nis, Serbia and Montenegro

Prof. Dr. Popova, Antoaneta
Technical University of Sofia, Bulgaria

Prof. Dr. Poulkov, Vladimir
Technical University of Sofia, Bulgaria
Electric Characteristics Of Barrier Electric Discharge

Peter Dineff1, Diliana Gospodinova2

Abstract – The external or static volt-ampere characteristic describes the behavior of the barrier discharge at the various stages of development and regimes of application. The technological regime of plasma-chemically active oxygen-containing plasma is examined. The effects of the non-uniformity of the electrical field of discharge, of the barrier gauge and of air gap size on the no-load regime of the discharge are shown.

Keywords – plasma treatment, cold plasma, oxygen-containing plasma, barrier discharge, external characteristic.

I. Introduction

The barrier discharge has many technological advantages that impose its application to the technology of textile and textile fibers, the electronics and microelectronics, the printing industry [1].

The barrier technological discharge burns in air or in various gases and vapors at atmospheric pressure. The absence of a vacuum technological system is one of the great advantages of the barrier discharge in comparison to vacuum discharges used as sources of cold technological plasma, namely the RF- and glow discharges.

The great number of ionization and chemical processes going on simultaneously during burning of barrier discharge create certain difficulties not only for the description of this discharge, but also with respect to its control.

The experimental investigations [2] conducted for a continuous time period allow searching for a new integral description and control of the barrier discharge through its external characteristic expressing the relationship between the average value of the electrical current passing through the discharge and the effective value of applied voltage, Fig. 1.

Moreover, it has turned out that this characteristic can be presented by a broken polygon of three linear sectors corresponding to:

◊ the stage before discharge ignition or the so-called non-operating regime;

◊ the stage of existence of a cold ozone- and oxygen-containing plasma;

◊ the stage of existence of a cold plasma that contains nitrogen oxides, Fig. 1.

THE TASK of the present work consists in examining the behavior at no load, i.e. without any material to be treated in the air gap, of low-frequency (50 Hz) barrier discharge burning in air at atmospheric pressure. The investigations are focused on the first operating part of the external characteristic of the discharge responsible for the generation of oxygen-containing technological plasma.

It is necessary to find new possibilities for increasing the effectiveness of the technological discharge, which is expressed by the high steepness of the working sector and the large intercept on the ordinate axis, Fig. 1.

The experimental investigation is carried out by varying: the non-uniformity of the electric field, the gauge of the glass barrier, and the size of the working air gap of plasma generator.

II. Experimental Investigations

The barrier is a plate with various gauge values that is made of alkaline silicate glass with dielectric permittivity $\varepsilon = 10$, electrical volume resistivity $\rho = 10^6$ $\Omega \cdot m$, and $t_{GL} = 25$ (at $20^\circ C$).

The change in thickness δ of the glass barrier determines the actual change in capacitance C_{δ} that is introduced by the barrier in the electric discharge circuit. The electric current is of capacitive character.

The values of capacitance C_{δ} of used glass barriers with various values of thickness δ, which have been calculated...
through the experimentally plotted external characteristics for virtually uniform electrical field of discharge, are shown in Fig. 2.

The virtually uniform electrical field of discharge is realized by using two flat rectangular electrodes placed parallel to each other at a distance b, forming the working gap in between. The ends of the two electrodes are rounded with a radius of 5 mm in order to diminish the non-uniformity of the field caused by the so-called edge effect.

The non-uniform electrical field is realized by using one of the two large electrodes with active area $S_{E1}=651$ cm² and eight flat round electrodes with ø50 mm and total area $S_{E2} = 8 \times 19.6=156.7$ cm². The coefficient of non-uniformity is $\beta = S_{E1}/S_{E2}=4.15$.

These eight electrodes may be situated in a large number of ways with respect to the large rectangular electrode. Two such approaches have been selected and they differ essentially from each other. According to the first one the eight electrodes are placed at distances not permitting their electrical interaction; the second approach requiring that the electrodes are placed in a group forming a maximally dense (hexagonal) package in the plane.

These configurations correspond to two different degrees of non-uniformity of the electrical field despite the same coefficient of non-uniformity $\beta=4.15$.

III. Results and Discussion

Based on the experimentally plotted external characteristic, the intensive characteristic of barrier discharge, namely the average value of current density J_{av}, is determined numerically as a function of the effective value of applied voltage U_{eff}. Figs. 3–5. It expresses the specific quantity of electricity transferred through the discharge gap in unit time.

The investigation performed shows that the introduction of an increasing degree of non-uniformity of the electrical field leads to a decrease in the intensity of ionization and chemical interactions going on in all sectors of the external characteristic; the inclination of straight sectors diminishes, and the value of intercept or free term goes up.

The cases investigated experimentally may be classified in the order of decreasing intensity of the barrier electrical discharge as follows:

- virtually uniform electrical field;
- eight electrodes placed at considerable distances from one another;
- eight electrodes placed as a group of maximum density.

The technological characteristic of the barrier discharge, however, demonstrates something else: the surface density of the active power of discharge p_a increases with the growing...
non-uniformity of electrical field in the two operating sectors of the characteristic, i.e. in sector 1 characterized by the obtaining of oxygen-containing cold plasma, and in sector 2 characterized by the obtaining of cold plasma that contains nitrogen oxides, Figs. 6, 7, and 8.

The active power p_a is perceived as a measure for the ionization and plasma-chemical processes going on in the discharge.

The difference observed may be explained by the fact that the surface density of active power p_a accounts not only for the influence of density J_{av} but also for the influence of the crucial parameter of the regime of burning, namely the critical density of current J_{cr}, as well as of the value of the voltage applied to discharge U_S:

$$p_a = (J_{av} - J_{cr}) U_S = J_p U_S .$$

That is why only the corrected current J_p can be a measure for the intensity of the threshold process of burning of barrier electrical discharge.

Rising the non-uniformity of electrical field decreases the critical density of current J_{cr}, and this effect is considerably larger than the decrease in the current density J_{av}, so that the difference $(J_{av} - J_{cr})$ becomes larger. The earlier ignition of the discharge and the displacement of operating sectors to the left determine the change in power density p_a.

The influence of the thickness δ of glass barrier and of the size b of discharge gap on the external characteristic of discharge or on the relationship between the average value of current I_{av} and the effective value of voltage U_{eff} applied to discharge gap is investigated experimentally for the first operating sector, i.e. for the area where the oxygen-containing cold plasma exists. Regression equations modeling the burning process of barrier discharge are obtained in accordance with a well-known methodology.

The inclination of the straight line or the current increase rate B, the intercept or the free term of the straight line A, and the correlation coefficient r, taking into account the degree of linear correlation between the current and applied voltage are shown in Figs. 9, 10, and 11.

The respective characteristics for a non-uniform electrical field are not presented because of the fact that the corresponding sector of their external characteristics is characterized by lower parameter values.

The maximal rate of current increase, namely within 200 to 240 μA/kV, is observed for thickness δ=4 mm of the glass barrier (the barrier capacitance being 580 pF) and size of discharge gap within 3 to 12 mm. Such rates of current increase are also observed for glass barrier thickness of 3 mm, but for a discharge gap of 1.5 mm, which is not, however, of great practical importance, Fig. 9.

The intercept B of the straight line modeling the external characteristic in the first operating sector reflects the linearity of the discharge process, which is appreciable for the values of δ in the range of 3 to 12 mm.

Fig. 6. Technological characteristic of the barrier discharge for a homogeneous electrical field.

Fig. 7. Technological characteristic of the barrier discharge for a non-homogeneous electrical field with eight electrodes placed at considerable distances from one another.

Fig. 8. Technological characteristic of the barrier discharge for a non-homogeneous electrical field with eight electrodes placed in a group.
It is natural to seek an improvement of the characteristic by augmenting the non-uniformity of the electrical field of discharge for this gauge of the glass barrier.

The value of the coefficient of linear correlation r remains relatively high in the whole region of investigation, except in two small areas, Fig. 11.

For barrier thickness $\delta=4$ mm this relates to large distances between electrodes, namely $b=7\div15$ mm. For barrier gauge $\delta=7$ mm this concerns nearly the whole range of investigation; it includes values of the discharge gap size $b=3\div15$ mm.

The observed relatively low values of correlation coefficient r are associated with the characteristic discharge instability in these regions.

IV. Conclusion

The electrical characteristics of the barrier electric discharge with industrial frequency (50 Hz) are obtained on the basis of the external discharge characteristic plotted experimentally.

The average value of the electric current density can perform the role of an intensive parameter of the process of discharge burning, because it does not reflect the threshold character of the process of discharge ignition and the transition to each of the two working parts of the external characteristic.

The growing extent of non-uniformity of the electrical field of discharge increases the surface density of the active power and its rate of increasing with the augmentation of voltage applied to the discharge gap. In such a way the non-uniformity of the electrical field influences positively the electrical and technological characteristics of barrier electrical discharge.

The thickness of the glass barrier exerts an influence on discharge burning through the capacitance it introduces in the electrical circuit of discharge.

References
