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Introduction

Low-frequency barrier discharge (LF-BD) at atmospheric pressure (about 0.1 MPa) and low
frequency (50 or 60 Hz) does not require an expensive and complicated vacuum system. Therefore
it is an alternative of the glow and radio frequency (RF-) discharges in the technology of plasma-
chemical surface treatment of polymers and polymer materials, [1].
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Fig. 1. Electric circuit of the experimental generator for production of cold technological
plasma at low frequency (50 Hz) and at atmospheric pressure (of about 0.1 MPa).AT | and AT 2
are adjustable transformers for fine regulation of the voltage on the LF-BD discharge; HVT - step-
up transformer; D 1 and D 2 — diodes allowing direct measuring of the average value of electric
current I o, of LF-BD discharge.

The bumning of the LF-BD discharge in air is defined mainly by both the oxygen and nitrogen
dissociation and ionization and the plasma-chemical modification — by the generation of both ozone
(and chemical active products of its degradation) and nitrogen oxides. The general description and
controlling of the plasma-chemical surface modification of different materials is too complicated
because of the very large variety of the plasma-chemical processes. That’s way an optimization of
the operation conditions is necessary when it is applied to any material.
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Fig. 2. Operating regions of the external characteristic of low-frequency barrier discharge — the
relationship between the average value of current la, and the effective value of applied voltage Uy
(a):OA — non-operating sector; AB — first operating seclor, namely plasma containing ozone and
products from its decomposition; CD - second operating sector, namely plasma containing nitrogen
oxides; BC - transient region. Other electric characteristics of the discharge: current density Jay
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(b), surface density of active power pa of the discharge (c) and the power factor
function of the applied voltage Uy

For a long time we and other authors are dealing with the utilization of wood flour (WF) through
filling of plastics and rubber compounds. It was found that it acts a non-active filler increasing

significantly the modulus but usually making worse some other mechanical parameters, [2].
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The aim of this investigation is to study the conditions under which the plasma-chemical action
of LF-CD discharge could be governed by suitable choice of both electrical regime of burning and
working media — “dry” air plasma or “wet” ammonia plasma (ammonia vapors). This approach
could be illustrated with plasma-chemical modification of WF and a study of its reinforcing effect
in conventional rubber compounds.

Experimental Investigations and Characteristic of the Discharge

Low-frequency high-pressure barrier discharge (LF-BD) owes existing discharge at which
capacitive (reactive) resistance of the dielectric barrier (one or two) limits the current in the
discharge gap of the plasma generator. The dynamic regime of burning insures large Debye's radius
that defines the existence of ideal classic plasma in relative large technological volumes. It has a
low temperature — it is cold plasma due to worse both impact interaction and exchange of kinetic
energy between the light and heave plasma components. LF-CD discharge is the sole discharge
producing cold technological plasma at atmosphere pressure — of about 0.1 MPa.
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Fig. 3. Relative change of the tensile strength, o of NR - compounds containing 50 phr WF treated in
air (a, ¢) or ammonia (b, d) plasma obtained in LF-BD discharge. The relative change of the tensile
strength o is towards the tensile strength (o= 6.0 MPa) of a control NR - compound filled with 50
phr non-treated WF. The tensile strength of the control non-filled NR - compound was of 24.6 MPa.

Our experimental investigations [3, 4] confirm the existence of linear correlation between the

quantity of electricity Q, irrespective between the average value of electric current /,,, current
density Jo, and the surface density of the active power p, of the LF-CD discharge from the one hand
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and the effective value U,y of the applied voltage on the other hand. For the investigated region this
linearity is of the functional type and the linear correlation coefficient is of over 0.99, [4].

The external static volt-ampere characteristic of the LF-CD discharge obtained experimentally
thorough the circuit of Fig. 1, allows to be selected the suitable working conditions of the plasma
generator — to generate ozone- and oxygen containing plasma or nitrogen oxides containing plasma.
Something more, thorough its derivative characteristics could be evaluated: the technological
efficiency, fig. 1c - thorough the density of the active power p,, that is used up to ionize the gases
and for all chemical changes in the discharge region; the energy efficiency — the power factor
gives an idea of the common power of the plasma generator working under the selected burning
regime of the LF-CD discharge.

Our investigations on the LF-CD discharge allow to be defined any of the discharge burning
regime varying one factor only — the voltage Uy applied to the plasma generator. The selected Uy
values are suited in the two strongly distinguishing technological regimes of the plasma generator
work, fig. 2c. The ammonia atmosphere is created through bring in of 10 ml 25 % water solution of
ammonia per 100 g WF (with equilibrium humidity) in the closed volume of the plasma generator at
atmosphere pressure — 0.1 MPa.

NR compounds, containing 50 phr WF (non-treated or ammonia plasma treated) were prepared
on lab rolls in a conventional way. The vulcanization was carried out at a temperature of 170°C for
the optimum cure time estimated according to BDS 1573 - 83 with Monsanto Rheometer, model
100 S. The mechanical parameters were tested according to /SO / R37.

Results and Discussion

The screening investigation of WF filled rubber compounds demonstrates a sharp increase of the
modulus M;go (up to about 3.5 times) and Mapo (up to about 2.7 times) as compared to the non-filed
control mixture. These changes are accompanied by significant decrease of the tensile strength, o
(down to about 4 times) and the elongation at break, £ (down to about 1.5 times).
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Fig. 4. Relative change of the elongation at break, & of NR - compounds containing 50 phr WF
treated in air (a) or ammonia (b) plasma obtained in LF-BD discharge. The relative change of the
elongation & at break is towards the elongation at break (¢ = 410 %) of a control NR - compound

filled with 50 phr non-treated WF. The elongation at break, & of the control non-filled NR -
compound was of 614 %.

Our plasma-chemical treatment was aimed at a saving of the high modulus of the WF filled NR -
compounds and an improvement of the other mechanical parameters. It was found that the “dry” air
plasma treatment leads to some improvement of the tensile strength o and the elongation ¢ at break
better expressed in the second, nitrogen regime — at 12 kV and more, fig. 3a and fig. 4a. This gives
reason to be expected that the “wet” ammonia plasma treatment will be more effective in the WF
surface modification regarding its reinforcing effect in NR - compounds. In the fig. 3 and fig. 4 are
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parallel given the results of the mechanical testing of NR - compounds filled by WF treated in air
and ammonia plasma under both oxygen and nitrogen regimes. All results are presented as a relative
change of the corresponding parameter toward its value for the control NR - compound filled by
50 phr non-treated WF.

The logic of our experiment is completely manifested at the change of the tensile strength, o
(see fig. 2 and fig. 3). Some think more, the maximal increase of the tensile strength is in region
quite suitable from the technological point of view — the treatment time is of about 1 min at 15 kV.
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The change of the elongation at break, £ is opposite for the compounds filled with oxygen or
nitrogen plasma treated WF, fig. 4. The plasma-chemical treatment of WF in oxygen plasma leads
to an increase in the elongation ¢ at break of the filled NR - compounds whereas the treatment in
nitrogen plasma decreases the same parameter with a similar percent.

Different changes are observed also in the modulus of the studied rubber compounds depending
on the plasma medium, fig. 5 and fig.6. Both modulus Mjgp and modulus Mzgy decrease (with
10+20 % or 20+30 % respectively) when the WF is treated in ammonia plasma, fig. 5c and fig. 6c¢.
The change is opposite when the WF is treated in air plasma — modulus Mjoy and modulus Mzn
increase with about 25 % or 15 % respectively. '

Conclusion

- LF-BD discharge is able to produce two types technological plasma at atmospheric pressure,
depending on the operation conditions: - ozone and oxygen containing one, generated at low
voltages — under 10-12 kV and relative low density of active power —under 5 W/m® and - nitrogen
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oxides and other active compounds containing plasma, generated at high voltages — over 12 kV and
high surface density of active power — over 5 W/m?;

- These two plasma regimes could be governed by the voltage and they get up “visible”
thorough the experimental observed extemal static volt-ampere characteristic of LF-BD discharge
from that come technology and energy current characteristics defining the plasma medium;

-The WF yields of plasma-chemical modification significantly better in the region of the
“nitrogen” plasma of LF-BD discharge;

- The ammonia plasma reinforces the modification effect regarding some mechanical parameters
of the NR - compounds filled by LF-BD discharge treated WF.
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Figure 2. Operating regions of the external characteristic of low-frequency barrier discharge — the
relationship between the average value of current /,, and the effective value of applied voltage Uy (a):

0OA — non-operating sector; 4B — first operating sector, namely plasma containing ozone and products
from its decomposition; CD - second operating sector, namely plasma containing nitrogen oxides; BC -
transient region. Other electric characteristics of the discharge: current density .J,, (b), surface density of
active power p, of the discharge (¢) and the power factor cos ¢ (d) as a function of the applied voltage U
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Figure 3. Relative change of the tensile strength, o of NR - compounds containing 50 phr WF treated in air
(a, ¢) or ammonia (b, d) plasma obtained in LF-BD discharge. The relative change of the tensile strength o is

towards the tensile strength (o= 6.0 MPa) of a control NR - compound filled with 50 phr non-treated WF.
The tensile strength of the control non-filled NR - compound was of 24.6 MPa.
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Figure 4. Relative change of the elongation at break, & of NR - compounds containing 50 phr WF treated in
air (a) or ammonia (b) plasma obtained in LF-BD discharge. The relative change of the elongation & at break
is towards the elongation at break (£=410 %) of a control NR - compound filled with 50 phr non-treated
WE. The elongation at break, ¢ of the control non-filled NR - compound was of 614 %.
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Figure 5. Relative change of the modulus
Mzpp of NR - compounds containing
50 phr  WF treated in air (a, b) or
ammonia (¢) plasma obtained in LF-BD
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modulus is towards the modulus
(M299=3.9 MPa) of a control NR
compound filled with 50 phr non-treated
WF. The modulus of the control non-
filled NR - compound was of 1.5 MPa.
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Figure 6. Relative change of the modulus
Migo of NR - compounds containing
50 phr WF treated in air (a, b) or
ammonia (c¢) plasma obtained in LF-BD
discharge. The relative change of the
modulus is towards the modulus
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WF. The modulus of the control non-
filled NR compound was of 1.5 MPa.



