
System for monitoring and control of the Baxter

robot

Yasen Yordanov

Faculty of Automatics

Technical University of

Sofia, Bulgaria

valerim@tu-sofia.bg

Ognyan Nakov

Faculty of Computer Systems and

Technologies

Technical University of

Sofia, Bulgaria

 nakov@tu-sofia.bg

Valeri Mladenov

Faculty of Automatics

Technical University of

Sofia, Bulgaria

valerim@tu-sofia.bg

Abstract—This scientific report details how a software and

hardware system can be created to allow the surveillance,

access and control of a Baxter industrial robot from any

location connected to the Internet. Baxter is being aimed at the

nearly 270,000 small to midsize manufacturers, which have five

hundred or fewer employees - companies of that size are

unlikely to be able to invest hundreds of thousands of dollars

into robots that require a redesign of their workspace and IT

personnel to run them. Commonly used, the robot can handle

many different industry tasks – co-packing and end-of-line

packaging, pick and place operations, plastic injection, printed

circuit board handling and many others. It’s important to

noted, that the platform on which the control software works is

Microsoft Windows. The programming language used to write

the code for the system is Python 2.7. For monitoring a robot

when executing a command, a high quality camera - AUSDOM

AW615 1080p - is also used in the system.

Keywords— Baxter, Python, Software, WebCam

I. INTRODUCTION

The Baxter robot [1] has many and different
applications. Thanks to its embedded cameras, a team from
New Zealand has managed to develop a project in which the
robot plays autonomously chess against human [2]. This is
achieved with the camera, positioned in one of the robot's
arms, that perceive the game state, an open-source chess
engine [3] that computes the next move, and a mechatronics
subsystem with a 7-DOF arm [4] that handles the pieces.
Also there are many different models of the robot, that are
developed to ease the it’s use. The dynamic model for
example is important, because he helps to find the
relationship between the joint actuator torques and the
resulting motion in the robot. The models is developed by a
team from the United Kingdom and uses Lagrange Euler (L-
E) equations [5]. In addition, the team has also developed
and presented the kinematic model of the robot. In general,
the Baxter robot is required to have a separate computer on
which the Robotic Operation System (ROS) [6] is installed.
It accesses the robot and its main functions. The problem is
that it is Linux [7] based, so Windows[8] computers can not
control the robot. Another problem is that the computer and
the robot must be connected in a common network so that
they can send and receive commands to each other. Of
course, difficulties in working with the robot appear because
of its size - 182 cm height and weight 138 kg. with the tray.
With these dimensions, dragging the robot for
demonstrations and training becomes a difficult task. The
software developed & described in the report solves these
problems. It is written for MS Windows operating systems.
A socket is used to connect to the computer running the
robot. The only other necessary hardware is a camera

through which the operator monitors the proper execution of
the commands provided by the software. Thanks to the code
developed, the robot can perform different movements with
its arms - stretched up, stretched to the side and then back to
neutral position, and can also move its head - left, right and
return to neutral position. Below, the report describes both
the software packages involved in writing the system code
and the hardware used. There is also a special insight into
testing the system - in the chapter Tests and Validation.

II. SOFTWARE

2.1. Intoduction
The Baxter robot is only compatible with Python [9]

version 2.7 - due to restrictions associated with the use of
"ROS". ROS, in addition to managing the robot, is only
compatible with Linux based operating systems. In order to
manage the robot through Windows, we use the python
WebSocket library. In order to communicate between the
two operating systems, the command is first sent through the
websocket from the user interface developed by the Tkinter
library, and then processed by the Ubuntu machine, which,
depending on the information, sends the required execution
command to the robot. The Windows machine in the system
plays a role as a client, and the Linux one on a server.
Before the software is used, it is necessary to create a
working environment. This is done by using the command
catkin make. The necessary packages can then be used. This
command is also used to configure the path to the code so
that it can be imported. In case other ROS packages are
used, the paths to the libraries that will be used must be
dynamically attached. Different classes are used to wrap the
envelopes.

2.3. Libraries used in the system

2.3.1. Python "tkinter"

This is the library that was used to create the user's
graphical interface, which is deployed on the Windows
personal computer. Some of the key functions used to write
the code are:

• button_connect ()

• button_config ()

• button.grid ()

2.3.2. Python "sys"

The library is used to operate the system with the
interpreter. For example, to get out of a function with exit (),
we need this library.

2.3.3. Python "time"

Provides various time-related features. For the proper
operation of the library, it's important to get to know the
operating system (OS) well, because each OS has a different
implementation of the time-processing functions. The
function, used in the system, to create delay is time.sleep().

2.3.4. ROS "Baxter_interface"

This is a library that initializes the particular part of the
Baxter robot that will be used. It is possible to initiate more
than one part of the robot, which allows for more complex
operations.

2.3.5. ROS "Rospy"

This is the library that makes it possible to interact with
the properties of ROS faster and easier.

2.3.6. WebSocket Library

WebSocket is a library that we use to create a
communication protocol for a persistent, bi-directional, full
duplex TCP connection from a client to a server. A
WebSocket connection is initiated by sending a WebSocket
handshake request from a HTTP connection to a server to
upgrade the connection. Along with the upgrade request
header, the handshake request includes a 64-bit Sec-
WebSocket-Key header. The server responds with a hash of
the key in a Sec-Websocket-Auth header. This header
exchange prevents caching proxy from resending previous
WebSocket exchanges. From that point, the connection is
binary and does not conform to HTTP protocol. The
WebSocket API is an advanced technology that makes it
possible to open a two-way interactive communication
session between a client and a server.

2.4. ROS

Robot Operational System (ROS) is used to
communicate with the robot. Once a command is sent from
the user interface through the WebSocket, this information
is processed, and with ROS the necessary connection with
the robot's hardware is created. Then the commands set by
the software are executed. ROS works with python version
2.7, scripts can be written interactively via a terminal or in
separate files - as in the case of system development. ROS is
sometimes called a "meta operating system" because it
performs many of the functions of an operating system. One
of its main purpose is to provide communication between
the user, the Ubuntu OS and, of course, Baxter. As with any
operating system, the benefit of ROS is the hardware
abstraction and low-level control of Baxter without the
Baxter user knowing all the details of the robot. The robot,
as well as the control station, must be connected to the same

internet network so they can communicate with each other.
ROS has several visualization and easy-to-read controls. For
example, MoveIt is a planning framework for movements
and operations. It makes it easier to take some of the
necessary coordinates needed for proper positioning of the
robot's hands and head.

III. HARDWARE

3.1. Introduction

Two types of hardware are used in the system - “Baxter
robot” and a high quality camera AUSDOM AW615 1080p.
The camera is used used to track the robot state by an
operator.

3.2. Baxter robot [3]

3.2.1. Physical specifications

The robot has 3’ 1” height without pedestal and
between 5’ 10” and 6 ’3” with the adjustable pedestal. It’s
maximum reach is1210 mm. The torso mounting plate
diameter is 13.3” and it‘s used for mounting on table. It has
body weight 165 lbs. without pedestal and 306 lbs. with
pedestal. The robot has 14 Degrees of Freedom (DOF) - 7
per arm.

The pedestal footprint is with dimentions 36” × 32”.
Baxter’s max Payload is 5 lb / 2.2 kg and he has gripping
torque maximum 10 lb /4.4 kg.

3.2.2. Computer and sensor specifications

The robot has 3rd Gen Intel Core i7-3770 (8MB,
3.4GHz) processor [10] w/HD4000 Graphics, 4GB memory
(NON-ECC, 1600MHZ DDR), 128GB Solid State Drivе
Storage. Baxter’s camera has max resolution 1280 x 800
pixels, it’s effective resolution is 640 x 400 pixels and has
30 frames per second frame rate. The camera’s focal length
is 1.2 mm. The robot has screen on his head with screen
resolution 1024 x 600 pixels. On his head he has also
infrared sensors [11] with range between 1.5 – 15 in / 4 –
40 cm.

3.2.3. Electrical specifications

The supply voltage of the robot is 120 volts alternating
current with rated current - 6 amps. The robot can operate
on battery – he has internal DC-to-120V AC Inverter [12]
It‘s important to note that the Baxter robot has an internal
PC, which cannot be powered directly off of 24V DC.
Baxter has standard 120VAC power interface. Robot power
bus and internal PC both have “universal” power supplies
and support 90 – 264V AC (47 – 63Hz). It’s maximum
consumption is 6A at 120V AC, 720W max per unit, the
maximum efficiency varry between 87% to 92%. For power
supply the robot uses medical-grade DC switching power
supply for robot power bus. Baxter has also tolerance to
Sags – they are tolerated to 90V but sustained interruption
will require manual power-up. The Voltage Flicker holdup
time is 20mS and the voltage unbalance supports single
phase operation only.

3.3. Camera AUSDOM AW615 1080p

3.3.1. Details

The camera has 123g. weight and dimensions
66*35*135mm

3.2.2. Lens Spec

They have focus from 30cm to infinity. The material,
used for create them is PC-6100D1, 4-layer film-coated
glass lens group. They have 65° horizontal viewing angle
and support zooming.

3.2.3. Microphone Spec

The microphone is built-in. It has S.P.L 32dB±2Db and
it’s omni-directional

3.2.4. Hardware Spec

The camera’s chipset is P269+MA1080, the control IC is
P269(REALTEK RTS5822)QFN46 and the sensor is
MA1080(5B3)CSP-48 1/4.5 CMOS “SAMSUNG”. The
user can choose between USB3.0 [13]/USB2.0/1.1 for
connection interface. The camera’s power consumption is
≤220MA and it supports different Operating Systems:
Windows 7, Windows XP2, Windows 8 and Windows Vista

3.2.5. Video/Image Spec

The video resolution is maximum 1920*1080 5fps [14]
and minimum - 160*120 30fps. There are 2 video modes:
the default one - YUY2 with max resolution 1920*1080
30fps and MJPG with min. resolution 160*120 30fps. The
photo resolution is 1920*1080 and the photo format is JPG
[15].

IV. EXPERIMENTS AND RESULTS

4.1. Robot tests
The system allows the user to execute up six different
commands - three for movement of the head and three for
movement of the robot's arms:

• Rotate the robot’s head to the left
• Rotate the head of the robot to the right
• Neutral position of the robot’s head
• Hands stretched upwards
• Hands stretched sideways
• Neutral hand position

The test set-up is show on figure 1

Fig. 1. – View of the system’s test set-up

The figures below show the movements of the hands of
Baxter and the movement of the robot's head

Fig. 2. - Examples of execution of a command for arm movement set by the
GUI

Fig. 3. - Examples of execution of a command for head movement set by
the GUI

4.2. Software testing

The developed management software has seven buttons -
one for each movement performed by the robot, and one for
the connection between the individual workstations. The
software also displays the information received from the
camera.

Fig. 4 – View of robot's control software

4.3. Testing the performance of the system

The system has been tested for its performance. Table 1

below describes:

• Command - the command sent from the user interface

to the robot for execution

• Reaction time - the time between the initialization of

the command and its completion - measured in seconds

• Status - a column for whether the command has been

executed

TABLE 1 - REACTION TIME OF THE SYSTEM

Command Reaction time

(s)

Status

Head position neutral 1.35 OK

Head position neutral 2 1.19 OK

Head position left 1.32 OK

Head position left 2 1.41 OK

Head position right 1.21 OK

Head position right 1.23 OK

Arm position neutral 3.21 OK

Arm position neutral 2 3.32 OK

Arm position straight

up

2.53 OK

Arm position straight

up 2

2.46 OK

Arm position wide 2.37 OK

Arm position wide 2 2.39 OK

V. CONCLUSION

As a result from the tests, it is clear that the system
performs all of the required tasks - running on Windows OS,
connecting to the Linux workstation, controlling the robot's
actions and displaying real-time performance. Also the
overall reaction time of the system is very fast. Still the
reaction time depends more or less on the internet
connection of the user, so the results received by different
users may differ from the experimental data given in this
paper. The future development of the system includes
improvements to the graphical interface - modernizing the
view as well as adding more execution commands to be
performed by the robot. Furthermore, the camera will be
replaced with Microsoft Kinect in order for the robot to be
controlled by the actions of a person standing in front of the
robot’s sensor by following the person’s movements.

ACKNOWLEDGMENT

This work is supported with project “Development of
mobile android application for control of industrial robot

Baxter” № 182ПД0015-08 / session 2018 of the Research

and Development Sector of the Technical University of
Sofia.

REFERENCES

[1] S. Cremer, L. Mastromoro and D. O. Popa, "On the performance of
the Baxter research robot," 2016 IEEE International Symposium on
Assembly and Manufacturing (ISAM), Fort Worth, TX, 2016, pp.
106-111.

[2] A. T. Chen and K. I. Wang, "Computer vision based chess playing
capabilities for the Baxter humanoid robot," 2016 2nd International
Conference on Control, Automation and Robotics (ICCAR), Hong
Kong, 2016, pp. 11-14.

[3] M. Levene and J. Bar-Ilan, "Comparing Typical Opening Move
Choices Made by Humans and Chess Engines," in The Computer
Journal, vol. 50, no. 5, pp. 567-573, Sept. 2007.

[4] T. Zhao, J. Yuan, M. Zhao and D. Tan, "Research on the Kinematics
and Dynamics of a 7-DOF Arm of Humanoid Robot," 2006 IEEE
International Conference on Robotics and Biomimetics, Kunming,
2006, pp. 1553-1558.

[5] A. Smith, C. Yang, C. Li, H. Ma and L. Zhao, "Development of a
dynamics model for the Baxter robot," 2016 IEEE International
Conference on Mechatronics and Automation, Harbin, 2016, pp.
1244-1249.

[6] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan and J. Tan, "RGMP-ROS:
A real-time ROS architecture of hybrid RTOS and GPOS on multi-
core processor," 2014 IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, 2014, pp. 2482-2487.

[7] M. Kong, J. Li and Wang Fengming, "Study on educational mode of
Linux majors in colleges," 2010 International Conference on
Artificial Intelligence and Education (ICAIE), Hangzhou, 2010, pp.
623-626.

[8] H. Upadhyay, H. A. Gohel, A. Pons and L. Lagos, "Windows
Virtualization Architecture For Cyber Threats Detection," 2018 1st
International Conference on Data Intelligence and Security (ICDIS),
South Padre Island, TX, 2018, pp. 119-122.

[9] B. A. Malloy and J. F. Power, "Quantifying the Transition from
Python 2 to 3: An Empirical Study of Python Applications," 2017
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Toronto, ON, 2017, pp. 314-
323.

[10] L. Dake, C. Zhaoyun and W. Wei, "Trends of communication
processors," in China Communications, vol. 13, no. 1, pp. 1-16, Jan.
2016.

[11] K. Kudlaty, A. Purde and A. W. Koch, "Development of an infrared
sensor for on-line analysis of lubricant deterioration," SENSORS,
2003 IEEE, Toronto, Ont., 2003, pp. 903-908 Vol.2.

[12] K. Rahimi, A. N. Motlagh and M. Pakdel, "A new soft-switched
ZCZVT DC-AC inverter," 2009 IEEE Vehicle Power and Propulsion
Conference, Dearborn, MI, 2009, pp. 1338-1344.

[13] P. Wüstner et al., "The use of USB 3.0 for fast data transfer in a PET
detector," 2014 19th IEEE-NPSS Real Time Conference, Nara, 2014,
pp. 1-2.

[14] M. Sultanoff, "A 100,000,000 Frame per Second Camera," in Journal
of the Society of Motion Picture and Television Engineers, vol. 55,
no. 2, pp. 158-166, Aug. 1950.

[15] P. B. Pawar, P. K. Kawadkar, M. Nagle and P. K. Ambare, "Analysis
of signature and signature free bufferoverflow detection for gif and
jpg format," 2013 Tenth International Conference on Wireless and
Optical Communications Networks (WOCN), Bhopal, 2013, pp. 1-5.

