
USING PATTERNS IN ARCHITECTURE OF SOFTWARE ENGINEERING
M.Sc. Ivanova Milka

Faculty of Mechanical Engineering – Technical University of Sofia, Bulgaria
milkachr@tu-sofia.bg

Abstract: Architecture patterns help define the basic characteristics and behavior of an application. Some architecture patterns lend

themselves toward highly scalable applications, whereas other architecture patterns naturally lend themselves toward applications that are
highly agile. Knowing the characteristics, strengths, and weaknesses of each architecture pattern is necessary in order to choose the one that
meets your specific business needs and goals.As a software architect, you must always justify your architecture decisions, particularly when
it comes to choosing a particular architecture pattern or approach. The goal of this report is to give you enough information to make and
justify that decision.

Keywords: Software engineering, pattern, software engineering architectures, architectural patterns,

There are five types software engineering architecture where
patterns are used
Layered Architecture
The most common architecture pattern is the layered
architecture pattern, otherwise known as the n-tier
architecture pattern. This pattern is the de facto standard for
most EE applications and therefore is widely known by most
architects, designers, and developers. The layered
architecture pattern closely matches the traditional IT
communication and organizational structures found in most
companies, making it a natural choice for most business
application development efforts.
Event-Driven Architecture
The event-driven architecture pattern is a popular distributed
asynchronous architecture pattern used to produce highly
scalable applications. It is also highly adaptable and can be
used for small applications and as well as large, complex
ones. The event-driven architecture is made up of highly
decoupled, single-purpose event processing components that
asynchronously receive and process events. The event-driven
architecture pattern consists of two main topologies, the
mediator and the broker. The mediator topology is com-
monly used when you need to orchestrate multiple steps
within an event through a central mediator, whereas the
broker topology is used when you want to chain events
together without the use of a central mediator. Because the
architecture characteristics and implementation strategies
differ between these two topologies, it is important to
understand each one to know which is best suited for your
particular situation.
Microkernel Architecture
The microkernel architecture pattern (sometimes referred to
as the plug-in architecture pattern) is a natural pattern for
implementing product-based applications. A product-based
application is one that is packaged and made available for
download in versions as a typical third-party product.
However, many companies also develop and release their
internal business applications like software products,
complete with versions, release notes, and pluggable
features. These are also a natural fit for this pattern. The
microkernel architecture pattern allows you to add additional
application features as plug-ins to the core application,
providing extensibility as well as feature separation and
isolation.
Microservices Architecture Pattern
The microservices architecture pattern is quickly gaining
ground in the industry as a viable alternative to monolithic

applications and service-oriented architectures. Because this
architecture pattern is still evolving, there’s a lot of confusion
in the industry about what this pattern is all about and how it
is implemented. This section of the report will provide you
with the key concepts and foundational knowledge necessary
to understand the benefits (and trade-offs) of this important
architecture pattern and whether it is the right pattern for
your application.
Space based architecture
Most web-based business applications follow the same
general request flow: a request from a browser hits the web
server, then an application server, then finally the database
server. While this pattern works great for a small set of users,
bottlenecks start appearing as the user load increases, first at
the web-server layer, then at the application-server layer, and
finally at the database-server layer. The usual response to
bottlenecks based on an increase in user load is to scale out
the web servers. This is relatively easy and inexpensive, and
sometimes works to address the bottleneck issues. However,
in most cases of high user load, scaling out the web-server
layer just moves the bottleneck down to the application
server. Scaling application servers can be more complex and
expensive than web servers and usually just moves the
bottleneck down to the database server, which is even more
difficult and expensive to scale. Even if you can scale the
database, what you eventually end up with is a triangle-
shaped topology, with the widest part of the triangle being
the web servers and the smallest part being the database
In any high-volume application with an extremely large
concurrent user load, the database will usually be the final
limiting factor in how many transactions you can process
concurrently. While various caching technologies and
database scaling products help to address these issues, the
fact remains that scaling out a normal application for extreme
loads is a very difficult proposition.
The space-based architecture pattern is specifically designed
to address and solve scalability and concurrency issues. It is
also a useful architecture pattern for applications that have
variable and unpredictable concurrent user volumes. Solving
the extreme and variable scalability issue architecturally is
often a better approach than trying to scale out a database or
retrofit caching technologies into a non-scalable architecture.
Pattern Description
The space-based pattern minimizes the factors that limit
application scaling. This pattern gets its name from the
concept of tuple space, the idea of distributed shared
memory. High scalability is achieved by removing the
central database constraint and using replicated in-memory

mailto:milkachr@tu-sofia.bg

data grids instead. Application data is kept inmemory and
replicated among all the active processing units. Processing
units can be dynamically started up and shut down as user
load increases and decreases, thereby addressing variable
scalability. Because there is no central database, the database
bottleneck is removed, providing near-infinite scalability
within the application.
Most applications that fit into this pattern are standard
websites that receive a request from a browser and perform
some sort of action. A bidding auction site is a good example
of this. The site continually receives bids from internet users
through a browser request. The application would receive a
bid for a particular item, record that bid with a timestamp,
and update the latest bid information for the item, and send
the information back to the browser.
There are two primary components within this architecture
pattern: a processing unit and virtualized middleware. Figure
1 illustrates the basic space-based architecture pattern and its
primary architecture components.

The processing-unit component contains the application
components. This includes web-based components as well as
backend business logic. The contents of the processing unit
varies based on the type of application— smaller web-based
applications would likely be deployed into a single
processing unit, whereas larger applications may split the
application functionality into multiple processing units based
on the functional areas of the application. The processing
unit typically contains the application modules, along with an
in-memory data grid and an optional asynchronous persistent
store for failover. It also contains a replication engine that is
used by the virtualized middleware to replicate data changes
made by one processing unit to other active processing units.

Figure 1. Space-based architecture pattern

The virtualized-middleware component handles
housekeeping and communications. It contains components
that control various aspects of data synchronization and
request handling. Included in the virtualized middleware are
the messaging grid, data grid, processing grid, and
deployment manager. These components, which are
described in detail in the next section, can be custom written
or purchased as third-party products.
Pattern Dynamics
The magic of the space-based architecture pattern lies in the
virtualized middleware components and the in-memory data
grid contained within each processing unit. Figure 2 shows
the typical processing unit architecture containing the
application modules, inmemory data grid, optional

asynchronous persistence store for failover, and the data-
replication engine.

The virtualized middleware is essentially the controller for
the architecture and manages requests, sessions, data
replication, distributed request processing, and process-unit
deployment. There are four main architecture components in
the virtualized middleware: the messaging grid, the data grid,
the processing grid, and the deployment manager.

Figure 2. Processing-unit component

Messaging Grid

The messaging grid, shown in Figure 3, manages input
request and session information. When a request comes into
the virtualized- middleware component, the messaging-grid
component determines which active processing components
are available to receive the request and forwards the request
to one of those processing units. The complexity of the
messaging grid can range from a simple round-robin
algorithm to a more complex next-available algorithm that
keeps track of which request is being processed by which
processing unit.

Data Grid

The data-grid component is perhaps the most important
and crucial component in this pattern. The data grid interacts
with the data- replication engine in each processing unit to
manage the data replication between processing units when
data updates occur. Since the messaging grid can forward a
request to any of the processing units available, it is essential
that each processing unit contains exactly the same data in its
in-memory data grid.

Figure 3 Processing-grid component

Although Figure 4 shows, a synchronous data replication
between processing units, in reality this is done in parallel
asynchronously and very quickly, sometimes completing the

data synchronization in a matter of microseconds (one
millionth of a second).

Figure 4. Processing-unit component

Processing Grid

The processing grid, illustrated in Figure 5, is an optional
component within the virtualized middleware that manages
distributed request processing when there are multiple
processing units, each handling a portion of the application.
If a request comes in that requires coordination between
processing unit types (e.g., an order processing unit and a
customer processing unit), it is the processing grid that
mediates and orchestrates the request between those two
processing units.

Figure 5. Processing-grid component
Deployment Manager
The deployment-manager component manages the dynamic
startup and shutdown of processing units based on load
conditions. This component continually monitors response
times and user loads, and starts up new processing units
when load increases, and shuts down processing units when
the load decreases. It is a critical component to achieving
variable scalability needs within an application.
Considerations
The space-based architecture pattern is a complex and
expensive pattern to implement. It is a good architecture
choice for smaller web-based applications with variable load
(e.g., social media sites, bidding and auction sites). However,
it is not well suited for traditional large-scale relational
database applications with large amounts of operational data.

Although the space-based architecture pattern does not
require a centralized data store, one is commonly included to
perform the initial in-memory data grid load and
asynchronously persist data updates made by the processing
units. It is also a common practice to create separate
partitions that isolate volatile and widely used transactional
data from non-active data, in order to reduce the memory
footprint of the in-memory data grid within each processing
unit.
It is important to note that while the alternative name of this
pattern is the cloud-based architecture, the processing units
(as well as the virtualized middleware) do not have to reside
on cloud-based hosted services or PaaS (platform as a
service). It can just as easily reside on local servers, which is
one of the reasons I prefer the name “space-based
architecture.”
From a product implementation perspective, you can
implement many of the architecture components in this
pattern through third- party products. Because the imple-
mentation of this pattern varies greatly in terms of cost and
capabilities (particularly data replication times), as an
architect, you should first establish what your specific goals
and needs are before making any product selections.
Pattern Analysis
The following table contains a rating and analysis of the
common architecture characteristics for the space-based
architecture pattern. The rating for each characteristic is
based on the natural tendency for that characteristic as a
capability based on a typical implementation of the pattern,
as well as what the pattern is generally known for. For a side-
by-side comparison of how this pattern relates to other
patterns in this report, please refer to Appendix A at the end
of this report.
Overall agility

Rating: High
Analysis: Overall agility is the ability to respond
quickly to a constantly changing environment. Because
processing units (deployed instances of the application)
can be brought up and down quickly, applications
respond well to changes related to an increase or
decrease in user load (environment changes).
Architectures created using this pattern generally
respond well to coding changes due to the small
application size and dynamic nature of the pattern.

Ease of deployment
Rating: High
Analysis: Although space-based architectures are
generally not decoupled and distributed, they are
dynamic, and sophisticated cloud-based tools allow for
applications to easily be “pushed” out to servers,
simplifying deployment.

Testability
Rating: Low
Analysis: Achieving very high user loads in a test
environment is both expensive and time consuming,
making it difficult to test the scalability aspects of the
application.

Performance
Rating: High
Analysis: High performance is achieved through the in-
memory data access and caching mechanisms build
into this pattern.

Scalability
Rating: High
Analysis: High scalability come from the fact that there
is little or no dependency on a centralized database,
therefore essentially removing this limiting bottleneck
from the scalability equation.

Ease of development
Rating: Low
Analysis: Sophisticated caching and in-memory data
grid products make this pattern relatively complex to
develop, mostly because of the lack of familiarity with
the tools and products used to create this type of
architecture. Furthermore, special care must be taken
while developing these types of architectures to make
sure nothing in the source code impacts performance
and scalability.

Summary
Table A-l summarizes the pattern-analysis scoring for each
of the architecture patterns described in this report. This
summary will help you determine which pattern might be
best for your situation. For example, if your primary
architectural concern is scalability, you can look across this
chart and see that the event-driven pattern, microservices
pattern, and space-based pattern are probably good
architecture pattern choices. Similarly, if you choose the
layered architecture pattern for your application, you can
refer to the chart to see that deployment, performance, and
scalability might be risk areas in your architecture

Table 1

While this chart will help guide you in choosing the right
pattern, there is much more to consider when choosing an
architecture pattern. You must analyze all aspects of your
environment, including infrastructure support, developer skill
set, project budget, project deadlines, and application size (to
name a few). Choosing the right architecture pattern is
critical, because once an architecture is in place, it is very
hard (and expensive) to change.
Bibliography:

1. O’Reilly, Software Architecture Patterns, Mark
Richards’2016

	Layered Architecture
	Event-Driven Architecture
	Microkernel Architecture
	Microservices Architecture Pattern
	Space based architecture
	Messaging Grid
	Data Grid

	Processing Grid
	Deployment Manager

	Considerations
	Pattern Analysis
	Overall agility

