OPTIMIZATION OF THE ROTOR’S SIZES OF PERMANENT MAGNET SYNCHRONOUS MACHINE

Tsvetomir Stoyanov, Radoslav Spasov, Plamen Rizov

Abstract: The results from a study of the magnet’s sizes in V-shaped permanent magnet synchronous machines, used in hybrid cars, are presented and analyzed in the paper. The analysis is based on the main harmonic of the magnetic flux density in the airgap. Also has been made a demagnetization researches. The analysis is performed by finite element magnetic field modeling and program modules for of magnetic flux density and total harmonic distortion coefficient calculation.

Key words: Finite element method, permanent magnet synchronous machine, harmonic distortion coefficient

1. Въведение

Синхронните машини с V – образно разположени вкопани постоянни магнити (СМПИМ) в ротора са често използвани в електроздвижванията на хибридни автомобили. Това се дължи на следните им предимства: висока ефективност,
гоям скоростен диапазон и високо съотношение размери/мощност [3, 5]. Особено важно е оптималното определяне на размерите на постоянните магнити. От една страна те определят характеристиките на СМПМ, а от друга страна, високата им и често променяща се цена, води до определяне на цената на проектираната машина. Поради изискването към задвижващия електродвигател да работи в широк скоростен диапазон, [1, 2] е необходимо намаляване на основния магнитен поток чрез размагнитване на машината.

Целта на настоящия доклад е посредством моделиране на магнитното поле в синхронния машини с V-образно разположени постоянни магнити и хармоничен състав на кривата на магнитната индукция във въздушната междина да се определи:
- при константен обем на постоянните магнити да се определят оптималните им размери;
- хармоничния състав на кривата на магнитната индукция във въздушната междина, при всяко съотношение на размерите на магнита;
- обработка на получените резултати за бъдещото им използване, при съставяне на скоростната характеристика на СМПМ.

2. Проведени изследвания за постигане на максимална амплитуда на първи хармоник на магнитната индукция във въздушната междина

След определянето на обема на магнитите и приемането му за константа, трябва да се определи геометрично разположение на магнитите в рамките на един полюс. Това става като при създаването на геометрията ъглите Alfa и AlfaD се променят в зададени диапазони и се спазват някои ограничения, като минималните размери дадени на фиг. 1 [3, 4, 6].

Alfa=60\(^0\)-120\(^0\)-ъгъл между магнитите, AlfaD=50\(^0\)-120\(^0\)-ъгъл на дъгата на магнитното мостче, m\(_{min}\)=1 mm-минимално разстояние между магнитите, h\(_{min}\)=0.8-1.75 mm-минимално разстояние между дъгата на магнитното мостче и окръжността на ротора.

Фиг. 1. Геометрично разположение на магнитите в рамките на един полюс.
При ваче определен обем на магнитные, са направени следните изследвания за машини с $P_2=10$, 30, 60 [кВт] и $2p=6$, 10. Изследвани са всички възможни размери на магнитите при определена стъпка на ъгъл $Alfa$. Сетата е кривата на магнитната индукция за 1500 точки от дъга, построена във въздушната междина за един чифт полюси / фиг. 2/. Еквивалентната токова плътност в канала е определена спрямо цялото му сечение и е $10A/mm^2$.

На изчислението стойности на магнитната индукция е направен хармоничен анализ показан на фиг. 3.

Фиг. 3. Хармоничен анализ на магнитната индукция.

Данните за амплитудата на първи хармоник на магнитната индукция са представени в табличен вид, заедно с размерите на магнитта на таблица 1 за машина с мощност $P_2=10$ [кВт], таблица 2 за машина с мощност $P_2=30$ [кВт], и
таблица 3 за машина с мощность $P_2=60$ [kW]. Данные с удебелен шрифт представляют геометрия, при кото е постигната магнитна индукция с максимальна големина.

<table>
<thead>
<tr>
<th>$P_2=10$ [kW]</th>
<th>$2p=6$</th>
<th>(\text{Alfa})</th>
<th>(a)</th>
<th>(b)</th>
<th>$\frac{\text{Alfa}}{\text{Alfa}_{\text{max}}})</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{[р.п.]})</td>
<td>(\text{[мм]})</td>
<td>(\text{[мм]})</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>60</td>
<td>67.2</td>
<td>2.3</td>
<td>0.50</td>
<td>1.02558</td>
<td>1.07184</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>65.2</td>
<td>2.4</td>
<td>0.52</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>64.3</td>
<td>2.5</td>
<td>0.53</td>
<td>1.03082</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>61.7</td>
<td>2.5</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>60.1</td>
<td>2.6</td>
<td>0.57</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>58.6</td>
<td>2.7</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>57.2</td>
<td>2.7</td>
<td>0.60</td>
<td>1.03886</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>55.8</td>
<td>2.8</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>54.6</td>
<td>2.9</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>53.4</td>
<td>2.9</td>
<td>0.65</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>52.3</td>
<td>3.0</td>
<td>0.67</td>
<td>1.04196</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>51.2</td>
<td>3.0</td>
<td>0.68</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>50.2</td>
<td>3.1</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>49.3</td>
<td>3.2</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>48.4</td>
<td>3.2</td>
<td>0.73</td>
<td>1.04366</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>47.5</td>
<td>3.3</td>
<td>0.75</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>46.7</td>
<td>3.3</td>
<td>0.77</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>45.9</td>
<td>3.4</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>45.2</td>
<td>3.5</td>
<td>0.80</td>
<td>1.0447</td>
<td>1.0447</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>44.5</td>
<td>3.5</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>43.9</td>
<td>3.6</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>43.2</td>
<td>3.6</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>42.6</td>
<td>3.7</td>
<td>0.87</td>
<td>1.04424</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>42.1</td>
<td>3.7</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>41.5</td>
<td>3.8</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>41.0</td>
<td>3.8</td>
<td>0.92</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>40.5</td>
<td>3.8</td>
<td>0.93</td>
<td>1.04295</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>40.1</td>
<td>3.9</td>
<td>0.95</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>39.6</td>
<td>3.9</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>39.2</td>
<td>4.0</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>38.8</td>
<td>4.0</td>
<td>1.00</td>
<td>1.04153</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P_2=10$ [kW]</th>
<th>$2p=10$</th>
<th>(\text{Alfa})</th>
<th>(a)</th>
<th>(b)</th>
<th>$\frac{\text{Alfa}}{\text{Alfa}_{\text{max}}})</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{[р.п.]})</td>
<td>(\text{[мм]})</td>
<td>(\text{[мм]})</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>60</td>
<td>37.0</td>
<td>3.0</td>
<td>0.50</td>
<td>1.07184</td>
<td>1.07184</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>35.9</td>
<td>3.1</td>
<td>0.52</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>34.9</td>
<td>3.2</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>34.0</td>
<td>3.2</td>
<td>0.55</td>
<td>1.06627</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>33.1</td>
<td>3.3</td>
<td>0.57</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>32.2</td>
<td>3.4</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>31.5</td>
<td>3.5</td>
<td>0.60</td>
<td>1.06994</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>30.7</td>
<td>3.6</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>30.0</td>
<td>3.7</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>29.4</td>
<td>3.7</td>
<td>0.65</td>
<td>1.06119</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>28.8</td>
<td>3.8</td>
<td>0.67</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>28.2</td>
<td>3.9</td>
<td>0.68</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>27.6</td>
<td>4.0</td>
<td>0.70</td>
<td>1.04796</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>27.1</td>
<td>4.1</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>26.6</td>
<td>4.1</td>
<td>0.73</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>26.2</td>
<td>4.2</td>
<td>0.75</td>
<td>1.0217</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>25.7</td>
<td>4.3</td>
<td>0.77</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>25.3</td>
<td>4.4</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>24.9</td>
<td>4.4</td>
<td>0.80</td>
<td>1.06055</td>
<td>1.06055</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>24.5</td>
<td>4.5</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>24.1</td>
<td>4.6</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>23.8</td>
<td>4.6</td>
<td>0.85</td>
<td>1.02219</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>23.5</td>
<td>4.7</td>
<td>0.87</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>23.2</td>
<td>4.8</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>22.9</td>
<td>4.6</td>
<td>0.90</td>
<td>1.0178</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>22.6</td>
<td>4.9</td>
<td>0.92</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>22.3</td>
<td>4.9</td>
<td>0.93</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>22.0</td>
<td>5.0</td>
<td>0.95</td>
<td>1.01116</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>21.8</td>
<td>5.0</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>21.6</td>
<td>5.1</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>21.4</td>
<td>5.2</td>
<td>1.00</td>
<td>0.9865</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Табл. 1. Амплитуда на първи хармоник на магнитната индукция при $P_2=10$ [kW]
Табл. 2. Амплитуда на първи хармоник на магнитната индукция при $P_2=30$ [кВт]

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>$\frac{\alpha}{\alpha_{\text{max}}}$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[rpm]</td>
<td>[мм]</td>
<td>[мм]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>66.1</td>
<td>4.2</td>
<td>0.73</td>
<td>0.96815</td>
</tr>
<tr>
<td>90</td>
<td>64.9</td>
<td>4.3</td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>92</td>
<td>63.8</td>
<td>4.3</td>
<td>0.77</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>62.8</td>
<td>4.4</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>61.8</td>
<td>4.5</td>
<td>0.80</td>
<td>0.95569</td>
</tr>
<tr>
<td>98</td>
<td>60.8</td>
<td>4.6</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>59.9</td>
<td>4.6</td>
<td>0.83</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>59.1</td>
<td>4.7</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>58.2</td>
<td>4.8</td>
<td>0.87</td>
<td>0.9566</td>
</tr>
<tr>
<td>106</td>
<td>57.5</td>
<td>4.8</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>56.7</td>
<td>4.9</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>56.0</td>
<td>5.0</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>112</td>
<td>55.4</td>
<td>5.0</td>
<td>0.93</td>
<td>0.96842</td>
</tr>
<tr>
<td>114</td>
<td>54.7</td>
<td>5.1</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>54.1</td>
<td>5.1</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>53.5</td>
<td>5.2</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>53.0</td>
<td>5.2</td>
<td>1.00</td>
<td>0.9565</td>
</tr>
</tbody>
</table>

При $P_2=30$ [кВт]:

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>$\frac{\alpha}{\alpha_{\text{max}}}$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[rpm]</td>
<td>[мм]</td>
<td>[мм]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>44.5</td>
<td>4.6</td>
<td>0.53</td>
<td>1.12225</td>
</tr>
<tr>
<td>66</td>
<td>43.3</td>
<td>4.7</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>42.1</td>
<td>4.9</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>41.1</td>
<td>5.0</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>40.1</td>
<td>5.1</td>
<td>0.60</td>
<td>1.12017</td>
</tr>
<tr>
<td>74</td>
<td>39.2</td>
<td>5.2</td>
<td>0.62</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>38.3</td>
<td>5.4</td>
<td>0.63</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>37.4</td>
<td>5.5</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>36.7</td>
<td>5.6</td>
<td>0.67</td>
<td>1.116</td>
</tr>
<tr>
<td>82</td>
<td>35.9</td>
<td>5.7</td>
<td>0.68</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>35.2</td>
<td>5.8</td>
<td>0.70</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>34.5</td>
<td>5.9</td>
<td>0.72</td>
<td>-</td>
</tr>
<tr>
<td>88</td>
<td>33.9</td>
<td>6.0</td>
<td>0.73</td>
<td>1.11217</td>
</tr>
<tr>
<td>90</td>
<td>33.3</td>
<td>6.2</td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>92</td>
<td>32.8</td>
<td>6.3</td>
<td>0.77</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>32.2</td>
<td>6.4</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>31.7</td>
<td>6.5</td>
<td>0.80</td>
<td>1.10443</td>
</tr>
<tr>
<td>98</td>
<td>31.2</td>
<td>6.6</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>30.8</td>
<td>6.7</td>
<td>0.83</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>30.3</td>
<td>6.8</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>29.9</td>
<td>6.9</td>
<td>0.87</td>
<td>1.10093</td>
</tr>
<tr>
<td>106</td>
<td>29.5</td>
<td>7.0</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>29.1</td>
<td>7.0</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>28.8</td>
<td>7.1</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>112</td>
<td>28.4</td>
<td>7.2</td>
<td>0.93</td>
<td>1.09716</td>
</tr>
<tr>
<td>114</td>
<td>28.1</td>
<td>7.3</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>27.8</td>
<td>7.4</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>27.5</td>
<td>7.5</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>27.2</td>
<td>7.5</td>
<td>1.00</td>
<td>1.07414</td>
</tr>
</tbody>
</table>
Табл. 3. Амплитуда на първи хармоник на магнитната индукция при $P_2=60$ [кВт]

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>$\alpha/\alpha_{\text{max}}$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{мм}]$</td>
<td>$[\text{мм}]$</td>
<td>$[-]$</td>
<td>$[\text{T}]$</td>
<td>$[\text{T}]$</td>
</tr>
<tr>
<td>60</td>
<td>106.4</td>
<td>6.5</td>
<td>0.50</td>
<td>1.01183</td>
</tr>
<tr>
<td>62</td>
<td>103.3</td>
<td>6.7</td>
<td>0.52</td>
<td>1.01369</td>
</tr>
<tr>
<td>64</td>
<td>100.4</td>
<td>6.8</td>
<td>0.53</td>
<td>1.01452</td>
</tr>
<tr>
<td>66</td>
<td>97.7</td>
<td>7.0</td>
<td>0.55</td>
<td>1.0158</td>
</tr>
<tr>
<td>68</td>
<td>95.1</td>
<td>7.2</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>92.7</td>
<td>7.4</td>
<td>0.58</td>
<td>1.01812</td>
</tr>
<tr>
<td>72</td>
<td>90.5</td>
<td>7.8</td>
<td>0.60</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>88.4</td>
<td>7.8</td>
<td>0.62</td>
<td>1.01953</td>
</tr>
<tr>
<td>76</td>
<td>86.4</td>
<td>8.0</td>
<td>0.63</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>84.5</td>
<td>8.1</td>
<td>0.65</td>
<td>1.02122</td>
</tr>
<tr>
<td>80</td>
<td>82.8</td>
<td>8.3</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>82</td>
<td>81.1</td>
<td>8.5</td>
<td>0.68</td>
<td>1.02364</td>
</tr>
<tr>
<td>84</td>
<td>79.5</td>
<td>8.8</td>
<td>0.70</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>78.0</td>
<td>8.8</td>
<td>0.72</td>
<td>1.02623</td>
</tr>
<tr>
<td>88</td>
<td>76.6</td>
<td>9.0</td>
<td>0.73</td>
<td>-</td>
</tr>
<tr>
<td>90</td>
<td>75.2</td>
<td>9.1</td>
<td>0.75</td>
<td>1.02399</td>
</tr>
<tr>
<td>92</td>
<td>73.9</td>
<td>9.3</td>
<td>0.77</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>72.7</td>
<td>9.4</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>71.6</td>
<td>9.6</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td>70.5</td>
<td>9.7</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>69.4</td>
<td>9.9</td>
<td>0.83</td>
<td>1.01595</td>
</tr>
<tr>
<td>102</td>
<td>68.4</td>
<td>10.0</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>67.5</td>
<td>10.2</td>
<td>0.87</td>
<td>-</td>
</tr>
<tr>
<td>106</td>
<td>66.6</td>
<td>10.3</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>65.8</td>
<td>10.4</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>64.9</td>
<td>10.6</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>112</td>
<td>64.2</td>
<td>10.7</td>
<td>0.93</td>
<td>-</td>
</tr>
<tr>
<td>114</td>
<td>63.4</td>
<td>10.8</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>62.7</td>
<td>11.0</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>62.1</td>
<td>11.1</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>61.4</td>
<td>11.2</td>
<td>1.00</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>$\alpha/\alpha_{\text{max}}$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{мм}]$</td>
<td>$[\text{мм}]$</td>
<td>$[-]$</td>
<td>$[\text{T}]$</td>
<td>$[\text{T}]$</td>
</tr>
<tr>
<td>60</td>
<td>85.3</td>
<td>9.5</td>
<td>0.50</td>
<td>1.07289</td>
</tr>
<tr>
<td>62</td>
<td>82.8</td>
<td>9.8</td>
<td>0.52</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>80.5</td>
<td>10.1</td>
<td>0.53</td>
<td>1.07509</td>
</tr>
<tr>
<td>66</td>
<td>78.3</td>
<td>10.3</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>76.3</td>
<td>10.6</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>74.4</td>
<td>10.9</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>72.6</td>
<td>11.2</td>
<td>0.60</td>
<td>1.0777</td>
</tr>
<tr>
<td>74</td>
<td>70.9</td>
<td>11.4</td>
<td>0.62</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>69.3</td>
<td>11.7</td>
<td>0.63</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>67.8</td>
<td>11.9</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>66.4</td>
<td>12.2</td>
<td>0.67</td>
<td>1.07542</td>
</tr>
<tr>
<td>82</td>
<td>65.0</td>
<td>12.5</td>
<td>0.68</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>63.8</td>
<td>12.7</td>
<td>0.70</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>62.6</td>
<td>12.9</td>
<td>0.72</td>
<td>-</td>
</tr>
<tr>
<td>88</td>
<td>61.4</td>
<td>13.2</td>
<td>0.73</td>
<td>1.07088</td>
</tr>
<tr>
<td>90</td>
<td>60.3</td>
<td>13.4</td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>92</td>
<td>59.3</td>
<td>13.7</td>
<td>0.77</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>58.3</td>
<td>13.9</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>57.4</td>
<td>14.1</td>
<td>0.80</td>
<td>1.06945</td>
</tr>
<tr>
<td>98</td>
<td>56.5</td>
<td>14.3</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>55.7</td>
<td>14.5</td>
<td>0.83</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>54.9</td>
<td>14.8</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>54.1</td>
<td>15.0</td>
<td>0.87</td>
<td>1.06559</td>
</tr>
<tr>
<td>106</td>
<td>53.4</td>
<td>15.2</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>52.7</td>
<td>15.4</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>52.1</td>
<td>15.6</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>112</td>
<td>51.5</td>
<td>15.7</td>
<td>0.93</td>
<td>1.06236</td>
</tr>
<tr>
<td>114</td>
<td>50.9</td>
<td>15.9</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>50.3</td>
<td>16.1</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>49.8</td>
<td>16.3</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>49.3</td>
<td>16.4</td>
<td>1.00</td>
<td>1.05974</td>
</tr>
</tbody>
</table>
3. Проведенные изследвания за постигане на максимално размагнитване на машината

Поради изискването към задвижващия електродвигател да работи в широк скоростен диапазон е необходимо намаляване на основния магнитен поток чрез размагнитване на машината. Това се постига чрез управление на инвертора, който да осигури размагнитваща съставка на статорния ток. Изследвана е размагнитващата съставка отговаряща на 50%, 75% и 100% от номиналния ток. За определяне на зоната на максимално размагнитване на машината при \(P_2 = 60 \) [kW], \(2p = 6 \) и \(2p = 10 \) ротора последователно се завърта с 41 стъпки в рамките на един чифт полюси. Еквивалентната токова плътност в канала е 50%, 75% и 100% от номиналната. За отчетените стойности на магнитната индукция при всяко положение на ротора е проведен хармоничен анализ показан на фигура 3. Кривата на изменение на амплитудата на първи хармоник на магнитната индукция във въздушната междина при изменението на ъгъл \(\Psi \) (между тока и е.д.н.) и натоварването е показана фигура 4.

Фиг. 4. Амплитудата на първи хармоник на магнитната индукция във въздушната междина във функция от натоварването и ъгъл \(\Psi \).

След това за всички стойности за ъгъл Alfa от фиг. 6 са създадени варианти с трите стойности на токовата плътност. След хармоничен анализ на кривата на магнитната индукция се определя стойността на първи хармоник във функция от натоварването и ъгъл Alfa. Тази зависимост е показана на фиг. 5 за \(2p = 6 \) и на фиг. 6 за \(2p = 10 \).
Фиг. 5. Амплитудата на първи хармоник на магнитната индукция във функция от натоварването и ъгъл Alfa при 2p=6.

Фиг. 6. Амплитудата на първи хармоник на магнитната индукция във функция от натоварването и ъгъл Alfa при 2p=10.
4. Анализ и изводи

1. При проведените изследвания за оптимизиране на конструкцията на магнитната система на ротора, при които първият хармоник на магнитната индукция във въздушната междинна е максимален, се оказа, че амплитудата няма изречен максимум и е почти еднаква в целия диапазон на изменение на ъгъл Alfa. Получените данни показват, че първоначално изчислените размери на магнита при проектиранието се отклоняват незначително от тези, при които има максимална индукция.

2. При изследване на възможностите за размагнитване на машината, има изрена оптимална зона, при която размагнитването е максимално. Тази зона съществува при двете конструкции на машината и при различни натоварвания. Степента на размагнитване зависи от натоварването и е по-сило изрена при машина с 2р=6.

3. Имайки предвид първите два извода следва, че избора на ъгъл Alfa е достатъчно да се проведе за постигане на максимално размагнитване.

ЛИТЕРАТУРА

Автори: инж. Цветомир Методиев Стоянов докторант от ТУ-София, катедра „Електрически машини“, e-mail cmetodiev@tu-sofia.bg; Радослав Лазаров Спасов доц. д-р инж. от ТУ-София, катедра „Електрически машини“, e-mail: rls@tu-sofia.bg; Пламен Миланов Ризов, доц. д-р инж. от ТУ-София, катедра „Електрически машини“, e-mail: pmri@tu-sofia.bg