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Abstract: The staring point in the research of the vibrations is the finding of natural frequencies 
and mode shapes, which indicate the frequency range of interest. A dynamic multibody model for 
determination of the torsional vibrations of a wind turbine drive train is presented in this paper. 
The model of a wind turbine consists of a rotor with rigid blades, elastic shafts, a drive train and a 
generator. The drive train has a gearbox with three gear stages. The gear stages include two high-
speed stages (helical gear pairs) and a low-speed planetary gear stage (three identical planets with 
spur teeth, sun and a fixed ring wheel). The model consists of 10 bodies and has 11 degrees of 
freedom. The model takes into account the stiffness of the engaged tooth pairs and shafts. In this 
model the aerodynamic and generator torques are applied as external loads. Computer simulation 
is performed by MATLAB. The natural frequencies and vibration modes are obtained for an 
industrial wind turbine. 
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1. Introduction 
 
The wind energy application has been growing 
rapidly for the last few years. In the last ten years 
the global installed capacity of wind energy has 
increased 20 times. This trend is expected to 
continue in Europe. The increase in the rotor and 
hence size of the turbine leads to a complicated 
design of the drive train in the wind turbine beside 
higher requirements of turbine reliability. 
Design calculations for a wind turbine base on 
simulation of mechanical loads on the turbine 
components caused by external forces. The external 
forces are the wind, the electricity grid and sea 
waves for offshore applications. 
The multi-body simulation techniques are used to 
analyze the loads on internal components of drive 
trains. The simplest model with one degree of 
freedom (DOF) for each drive train component is 
used to investigate only torsional vibrations in the 
drive train. In this model all bodies have one DOF, 
i.e. the rotation around their axis of symmetry. 
Therefore, the coupling of two bodies involves 2 
DOF’s. Gear contact forces between two wheels are 
modelled with a linear spring acting in the plane of 
action along the contact line (normal to the tooth 
surface), [17, 21]. More complex model with 6 
DOF’s for each drive train component is used for 
investigation of the influence of bearing stiffness on 
the internal dynamics of the drive train. All drive 

train components are treated as rigid bodies. The 
linkages in the multi-body model, representing the 
bearing and tooth flexibilities, have 12 DOF’s, [38]. 
Finally, it is used a flexible model in which the drive 
train components are modelled as finite element 
models instead of rigid bodies, [2, 4]. This model 
adds a possibility of calculating stress and 
deformation in the drive train components in some 
time. Any addition to the model leads to additional 
information about dynamics of the drive train but 
makes the modelling and the simulation more 
complicated.  
The modern wind turbines have a planetary gearbox. 
Studies on the vibrations in a planetary gear system 
have been done in [2, 10, 18, 19, 20, 23, 34].   The 
tooth meshes are modelled as a linear spring with 
stiffness which is a time function. For this reason the 
vibration equations of a planetary gear system are 
differential equations with periodic coefficients, [2, 
5, 18, 19 20, 23]. References [6, 7, 11, 12, 14, 19, 
23] investigate the vibrations of compound planetary 
gears. 
The applications of these modelling techniques on 
different drive trains of wind turbines are presented 
in [13, 15, 16, 24-27, 28, 29, 31-33]. References 
[35, 36] present the numerical investigations for the 
given wind turbine in this paper, where the meshes 
stiffness are modelled as constant springs. In this 
case the differential equations, which describe the 
torsional vibrations of the wind turbine, have 
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constant coefficients. Reference [37] presents a 
dynamical model of an wind turbine, but the meshes 
stiffness are modelled as a time function. 
This paper is based on the work [37]. The 
Lagrange’s equations are used to obtain the 
equations of the torsional vibrations of the wind 
turbine, [3, 8, 22, 30, 40]. Computational modal 
analysis of an example wind turbine is presented.  
 
2. Dynamic Model Of Wind Turbine 
 
The wind turbine consists of a rotor, a drive train 
and a generator (Fig.1). The drive train has a 
gearbox with three stages. The gear stages include 
two high-speed parallel gear stages (helical gear 
pairs) and a low-speed planetary gear stage (three 
identical planets with spur teeth, sun and fixed ring 
wheel) (Fig.2). 
 

 
Figure 1: Schematic sketch of wind turbine 

 

 
 

Figure 2: Sketch of gearbox: h-hull, c-carrier, 
p1,2,3-planets, s-sun, g1,2,3-gears 

 
 
The dynamic multi-body model is shown in Fig.3. It 
consists of a rotor with 3 rigid blades, a low-speed 
elastic shaft, a gearbox with 3 gear stages, a high-
speed elastic shaft and a generator rotor. Thus, the 
model consists of 10 bodies and 11 DOF’s 
 

 
Figure 3. Dynamical model of wind turbine 

 
The gear contact forces between wheels are modeled 
by linear spring acting in the plane of action along 
the contact line (normal to the tooth surface), [21, 
41]. The stiffness gear is defined as a normal 
distributed tooth force in a normal plane causing the 
deformation of one or more engaging tooth pairs, 
over a distance of 1 μm, normal to a envolvent 
profile in a normal plane, [9]. This deformation 
results from the bending of the teeth in contact 
between the two gear wheels, the one of which is 
fixed and the other is loaded. The stiffness varies in 
the time and can be expressed in a time Fourier 
series form, [1, 18-20, 34, 37]. 
Damping and friction forces are not included. These 
assumptions are valid for heavily to moderately 
loaded gears that are correctly for a large wind 
turbine, [17, 21]. 
It is also accepted that the masses of the planets are 
identical. 
The vector of the generalized co-ordinates is 

   Tgngggsppprchq  321321                        (1) 
where i  (i=h,c,r,p1,p2,p3,s,g1,g2,g3,gn) are the rotational angles of the ring (gearbox hull), carrier, rotor (hub), 
planet 1, planet 2, planet 3, sun, gear 1, gear 2, gear 3 and the generator rotor (Fig. 3). 

The differential equations, describing the torsional vibrations of the wind turbine, are   
}{}]{)([}]{[ 2 TqCtCqM             (2) 

where M is the inertia matrix  and C is the stiffness matrix. The matrix C  results from the carrier rotation. 
The vector of the external forces, caused by the wind and the electricity grid, is 
   Tgenaero TTT 000000000      

                                                                                                                                                               (3) 
where aeroT  and genT  are the aerodynamic and electromagnetic torques. 
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The non-zero numbers of inertia matrix M are 

;
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3. Numerical Results 
 
The rotor, drive train and generator characteristics 
of an example turbine can be seen in Ref. [37]. To 
determinate the  natural frequencies and mode 
shapes the time invariant system is considered. All 
mesh stiffnesses are considered to be constant and 
equal to their average stiffness over one mesh 
cycle. All externally apllied forces are assumed to 
be zero. 

 The natural frequencies and modes shapes 
are obtained by Equation (2) 

   0][][][ 1  qECM    
          (4) 
All calculations are accomplished using the codes 
of MATLAB. The natural frequencies in Hz are 
728    387    288   327    324    318    219    178    62    

0    2.5 
 The mode shapes are shown in Fig.4 
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Figure 4: Mode shapes of wind turbine 

For beter ilustration the mode shapes are also presented in Fig.5-14. 
 
 

 
 

Fig.5. Mode shapes for natural frequency 782 Hz. Solid lines are the equilibrium positions  
and dashed lines are the deflected positions. 
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Fig.6. Mode shapes for natural frequency 387 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 

 
 

Fig.7. Mode shapes for natural frequency 288 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 

 
 

Fig.8. Mode shapes for natural frequency 327 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 
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Fig.9. Mode shapes for natural frequency 324 Hz. Solid lines are the equilibrium positions and dashed 

lines are the deflected positions. 
 

 

 
Fig.10. Mode shapes for natural frequency 318 Hz. Solid lines are the equilibrium positions and dashed 

lines are the deflected positions. 
 

 

 
Fig.11. Mode shapes for natural frequency 219 Hz. Solid lines are the equilibrium positions and dashed 

lines are the deflected positions. 
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Fig.12. Mode shapes for natural frequency 178 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 

 
 

Fig.13. Mode shapes for natural frequency 62 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 

 
 

Fig.14. Mode shapes for natural frequency 2.5 Hz. Solid lines are the equilibrium positions and dashed lines are 
the deflected positions. 
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4. Conclusions 
  This work identifies the properties of the 
natural frequency spectra and vibration modes of a 
wind turbine with a complex drive train. The 
developed model and results, obtained by its help, 
are useful for the gearbox designing and scientific 
researches. The prediction of natural frequencies 
allows taking actions for avoiding of resonance 
regimes in the gearbox and wind turbine designing. 
This model gives an opportunity for investigation 
of torsional vibrations excited by wind and 
electromagnetic loads. The results can be used for 
wind turbine vibrodiagnostics. 
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