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DYNAMIC ANALYSIS OF A DRIVE TRAIN OF A WIND TURBINE WITH FAULT 
CAUSED BY TOOTH PITTING 

 
Assoc. Prof. M.Sc. Todorov  M., PhD 

Transport Faculty  – Technical University of Sofia, Bulgaria 

michael.todorov@tu-sofia.bg 

Abstract: Planetary gear systems are widely used in wind power systems because of the advantages of compact design, large carrying 
capacity, and high transmission efficiency. Despite these advantages, the several conditions under which such gears are typically used may 
lead to failure. Tooth pitting is one of the frequently encountered failure modes. The damage of teeth (as tooth pitting) is modeled for a wind 
turbine drive train. The drive train has got a three-stage gearbox that contains two high-speed parallel gear stages and a low-speed 
planetary gear stage. The proposed dynamic model of a wind turbine also includes a rotor and an electric generator. The model consists of 
10 bodies and has got 11 degrees of freedom. The aerodynamic and generator torques are applied as external loads. The influence of tooth 
pitting on the gear mesh stiffness is scrutinized. Healthy drive train dynamic response and response of drive train containing tooth pitting 
are compared. The obtained results give an useful information about health monitoring of wind turbine drive train.  

Keywords: PITTING, GEAR MESH STIFFNESS, DRIVE TRAN, WIND TURBINE, DYNAMIC ANALYSIS 

 

1. Introduction 
The wind energy application has been growing rapidly for the 

last few years. In the last ten years the global installed capacity of 
wind energy has increased 20 times. This trend is expected to 
continue in Europe. However, the increase of the wind turbine sizes 
leads to component failures and an increase of operation and 
maintenance costs and subsequently, the cost of energy. Therefore, 
there is a need for the industry to reduce the wind turbine downtime 
and to increase its reliability. An investigation of dynamic behavior 
of wind turbine can potentially help for detecting incipient failures 
early, thereby reducing the reasons for catastrophic failures.  

Figures 1 and 2 illustrate the failure statistics published by 
Wissenschatliches Mess- und Evaluierungs- programm  (WMEP) 
database from 1993 to 2006 [24, 25, 36].  

 
Fig. 1 Reliability of turbine subsystems [24] 

 

 

 
Fig. 2 Downtime of turbine subsystems [24] 

Figure 3 illustrates the gearbox damage distribution published 
by NREL database [24, 25, 36]. 

From the figures it can be seen that the electrical systems had 
highest failure rate, but the gearboxes caused longest downtime per 
failure. The gearbox damage distributions show that both bearing 
and gear faults are concentrated in the parallel section. 

 
Fig. 3 Gearbox damage distribution [25] 

Design calculations for a wind turbine are based on simulation 
of mechanical loads on the turbine components caused by external 
forces. The external forces are the wind, the electricity grid and sea 
waves for offshore applications. 

The multi-body simulation techniques are used to analyse the 
loads on internal components of drive trains. All drive train 
components are treated as rigid bodies. The linkages in the multi-
body model, representing the bearing and tooth flexibilities, are 
modelled with a springs acting in the plane of action [7, 10, 13, 14, 
26-28].  

It is also used a flexible model in which the drive train 
components are modelled as finite element models instead of rigid 
bodies. This model adds a possibility of calculating stress and 
deformation in the drive train components at the same time. Any 
addition to the model leads to additional information about 
dynamics of the drive train but makes the modelling and the 
simulation more complicated [1, 12, 20]. 

The modern wind turbines have a planetary gearbox. Studies on 
the vibrations in a planetary gear system have been done in [1, 3, 5, 
16, 17]. The tooth meshes are modelled as a linear spring with 
stiffness that is a time function. For this reason the vibration 
equations of a planetary gear system are differential equations with 
periodic coefficients, [2-5, 16, 17].  

The applications of these modelling techniques on different 
drive trains of wind turbines are presented in [1, 10-13, 20-23, 26-
28]. References  [29, 30] present the numerical investigations for 
the given wind turbine in this paper, where the meshes stiffness are 
modelled as constant springs. In this case the differential equations, 
which describe the torsional vibrations of the wind turbine, have 
constant coefficients. In [31, 32, 34], a dynamic model of wind 
turbine is proposed, where the mesh stiffness is modelled as a time 
function, and the aerodynamic and electromagnetic torques are 
constants. In Ref. [33], the same dynamical model is proposed, but 
the aerodynamic and electromagnetic torques are modelled as time 
functions. 
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References [2, 4, 35, 37, 38] present the effects of tooth 
damages and the wearing on the gear dynamics. Typical gear 
failures are: broken tooth, cracked tooth, worn tooth, pitting, 
spalling and chipping. Several approaches are proposed in these 
references to understand the influence of local damages on the 
dynamic behavior of gearbox. 

Pitting occurs when fatigue cracks are initiated on the tooth 
surface or just below the surface. Usually pits are the result of 
surface cracks caused by metal-to-metal contact of asperities or 
defects due to low lubricant film thickness. High-speed gears with 
smooth surfaces and good film thickness may experience pitting 
due to subsurface cracks. These cracks may start at inclusions in the 
gear materials, which act as stress concentrators, and propagate 
below and parallel to the tooth surface. Pits are formed when these 
cracks break through the tooth surface and cause material 
separation. When several pits join, a larger pit (or spall) is formed. 
Pitting can also be caused by foreign particle contamination of 
lubricant. These particles create surface stress concentration points 
that reduce lubricant film thickness and promote pitting [15]. 

2. Dynamic model of wind turbine 
The wind turbine consists of a rotor, a drive train and a 

generator (Fig.4). 

 
Fig.4 Schematic sketch of wind turbine 

The drive train has a gearbox with three stages. The gear stages 
include two high-speed parallel gear stages and a low-speed 
planetary gear stage (three identical planets with spur teeth, sun and 
fixed ring wheel) (Fig.5). 

 
Fig. 5 Sketch of gearbox: h-hull, c-carrier, p1,2,3-planets, s-sun, 
g1,2,3-gears 

The dynamic multi-body model is shown in Fig.6. It consists of 
a rotor with 3 rigid blades, a low-speed elastic shaft, a gearbox with 

3 gear stages, a high-speed elastic shaft and a generator rotor. Thus, 
the model consists of 10 bodies and 11 DOF’s. 

 

 
Fig. 6 Dynamical model of wind turbine 

The differential equations, describing the torsional vibrations of 
the wind turbine, are 

[ ] TqCCqM =−+ ωω2  

where q is the degrees of freedom vector 

[ ]Tgngggsppprch φφφφφφφφφφφ 321321=q  

and M is the inertia matrix, C is the stiffness matrix, and Cω is the 
centripetal stiffness matrix. The angles ϕi 
(i=h,c,r,p1,p2,p3,s,g1,g2,g3,gn) are the rotational angles of the ring 
(gearbox hull), carrier, rotor (hub), planet 1, planet 2, planet 3, sun, 
gear 1, gear 2, gear 3 and the generator rotor (Fig. 6). The vector of 
the external forces, T, caused by the wind and the electricity grid, is 

[ ]Tgenaero TT 000000000=T  

The non-zero numbers of inertia matrix M, stiffness matrix C, and 
Cω can be seen in [31, 32]. 

Gear Mesh Stiffness 

● Healthy (perfect) gears 

The gear contact forces between wheels are modelled by linear 
spring acting in the plane of action along the contact line (normal to 
the tooth surface), [3-5, 17, 18]. The stiffness gear is defined as a 
normal distributed tooth force in a normal plane causing the 
deformation of one or more engaging tooth pairs, over a distance of 
1 μm, normal to an involute profile in a normal plane, [6]. This 
deformation is a result from the bending of the teeth in contact 
between the two gear wheels, the first of which is fixed and the 
other is loaded. The stiffness varies in the time and can be 
expressed in a time Fourier series form, [17, 18]. Each mesh 
stiffness is presented by 

)()( tCCtC
vigigig +=  

where igC  and 
vigC  are mean and time-varying components of the 

stiffness. The variation part is periodic with frequency iii z ω=Ω  
( iz  is the number of teeth on the gears, iω  is mean angular velocity 
of the gear shafts) and it is expressed in Fourier series as 

( )∑
∞

=
Ω+Ω=

1
cossin2

s
isissvgvig tsbtsaCC  

where  

( )[ ] ( )πεεπ
π

sps
s

as sin2sin2
−−=  

( )[ ] ( )πεεπ
π

sps
s

bs sin2cos2
−−=  
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Without loss of generality, it can be accepted that 0=p  ( p  is 
the phasing between planets) [18]. In practice, three or four Fourier 
terms reasonably approximate the stiffness variation. 

The rectangular waves are often used to approximate the mesh 
stiffness between 2 pairs of teeth in contact [3, 5, 17]. In this study, 
the 

vigC are specified as rectangular waves with variational 

amplitudes and periods. 

The rotating frequency of the carrier, sun, planets, and mesh 
frequency for the planetary gear stage can be calculated by 

πω 2cc =Ω  
( ) srscs zzz +=Ω ω  

( )( ) ppscssp zzzz +−=Ω ωω  

rcmesh zΩ=Ω  
 
● Tooth Crack Defect Modelling 
It has been established [4] that gear tooth failure will induce 

amplitude and phase changes in vibration, which in turn can be 
represented by magnitude and phase changes in gear mesh stiffness. 
The tooth-pitting-induced variations of mesh stiffness used for this 
simulation is shown in Fig.7. 

 
 

 
Fig.7 Photo of tooth pitting and effect on mesh stiffness 

An amplitude modulation of the gear mesh signal is excepted 
from this pitting-induced change. The new mesh signal, resulting 
from crack defect modelling can be expressed by 

)()()( tdtCtC igdig =  

where d(t) is the modulating function. 

As a result of this amplitude modulation, an exciting force is 
appeared, and the frequency content of the response is also affected 
[4, 5]. 

Assuming a localized tooth pitting on only one sun tooth, the 
defect frequency is written as 

( )csd Ω−Ω=Ω 3  

3. Results 
All calculations are accomplished by using the codes of 

MATLAB. 

The drive train data can be seen in [30, 31]. It is assumed that 
the aerodynamic torque and electromagnetic torque are 

=−= genaero TT  15000 Nm. The rotor is turned with angular 
velocity =ω 18 tr/min. It is also assumed that there is a pitting 
tooth of the sun of the planetary gear stage. The rate of degradation 
of stiffness is 25%. Figure 8 presents the time series and frequency 
domain of torsional vibrations of the wind drive train hull. The 
vibration signal of the gearbox hull can be easily measured, and 
thus to be made some conclusions about the state of the gearbox. 

In Fig. 8, the influence of pitting tooth of the sun of the 
planetary gear stage on the vibration signals is shown for presented 
degradation value. It is seen that the obvious periodical impulses 
caused by the pitting tooth are appeared. This carries diagnostic 
information that is important for extracting features of tooth defects.   

 
Fig.8 Hull torsional vibration: a) health gears case and b) pitting sun case 

4. Conclusion 
1. A detailed multi-body model of the wind turbine with a complex 
drive train was developed to examining the gearbox dynamics in the 
presence of defect such tooth pitting.  

2. This effect of pitting tooth breakage on the sun-planet gear mesh 
stiffness was modeled by an amplitude reduction.  

3. The time series and frequency domains of rotation angle of the 
drive train hull were presented. The teeth pitting effect on the gear 
mesh stiffness leads to an increase of impulses corresponding to the 
mesh of defected tooth. This information is very useful in a 
condition-monitoring system and can detect defect during early 
stage of failure in wind turbine gearbox. 
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