MACHINES. TECHNOLOGIES. MATERIALS

INTERNATIONAL SCIENTIFIC JOURNAL

PUBLISHER

SCIENTIFIC TECHNICAL UNION OF MECHANICAL ENGINEERING

“INDUSTRY 4.0”

108, Rakovski Str., 1000 Sofia, Bulgaria
tel. (+359 2) 987 72 90,
tel./fax (+359 2) 986 22 40,
office@stumejournals.com
www.stumejournals.com

ISSN PRINT 1313-0226, ISSN WEB 1314-507X, YEAR XI, ISSUE 1 / 2017

EDITOR-IN-CHIEF
Prof. D.Sc. DHC Georgi Popov,
President of Bulgarian Scientific and Technical Union of Mechanical Engineering

EDITIORIAL BOARD

MEMBERS SCIENTIFIC COMPETENCE
Prof. Dimitar Damyanov Automatisation of production
Prof. Dimitar Karaivanov Mechanics of machines
Prof. Dimitar Stavrev Technologies and materials
Prof. Dimitar Yonchev National and industrial security
Prof. Galina Nikolcheva Machines tools and technologies
Prof. Hristo Shehtov Automatisation of production
Prof. Idiliija Bachkova Automatisation of production
Prof. Ivan Kralov Mechanics of machines
Prof. Ivan Parshorov Technologies and materials
Prof. Ivan Yanchev Machines and technologies
Prof. Ivo Malakov Automatisation of production
Prof. Kiril Angelov Industrial Management
Prof. Lilo Kunchev Transport Equipment and Technology
Prof. Lubomir Dimitrov Machines and technologies
Prof. Miho Mihov Agricultural machinery
Prof. Miroslav Denchev Ergonomics and design
Prof. Mladen Velev Economics and Marketing
Prof. Nikolay Diulgerov Technologies and materials
Prof. Ognyan Andreev Production management
Prof. Petar Kolev Transport Equipment and Technology
Prof. Roman Zahariev Robotics
Prof. Sasho Guergov Robotic systems and technology
Prof. Tsanka Dikova Technologies and materials
Prof. Vitan Galabov Mechanics of machines
CONTENTS

MACHINES

COMPARATIVE RESEARCH ON THE QUALITY OF AUTOMOTIVE STATORS CONDUCTORS WELDING OBTAINED THROUGH BRAZING AND TIG WELDING METHODS
PhD, P. Eng. Pushev G., Chief Assistant Velev S., Prof. Dulgerov N. ... 3

STUDY OF RESISTING MOMENT INFLUENCE ON OPERATION OF HIGH-VOLTAGE INDUCTION MOTOR PUMP ELECTRIC DRIVE
Assoc. Prof. Rachev S. PhD., Lyubomir Dimitrov, Ivaylo Dimitrov ... 7

ABOUT COMPUTER DESIGN OF MACHINE AND EQUIPMENT THE GENERAL MACHINE BUILDING
Dinev G. PhD., Iliev Zh. PhD. ... 11

TECHNOLOGIES

APPLICATION OF LOW-FREQUENCY VIBRATION PROCESSING AT A PERFORMANCE RESTORATION OF STEAM TURBINE BLADES
Candidate of Technical Sciences, associate professor Savinkin V.. Director of Remplazma LLP Kiselyov L., master, research associate Kolisnichenko S..Junior researcher mitry Koptyaev D..Master, research associate Derman A. ... 15

EXPERIMENTAL RESEARCH AND MODELING OF THE IMPACT OF PLASTIC DEFORMATION ON DIFFERENT MATERIAL CHARACTERISTICS
Leo Gusel .. 17

IMPROVING THE RELIABILITY OF INSTRUMENTS FOR MEASURING AND THERMAL CONTROL OF OBJECTS OF DIFFERENT PHYSICAL NATURE BY THE FINISH ELECTRON-BEAM PROCESSING SURFACES OF OPTICAL ELEMENTS
Associate Professor Ph.D. Yatsenko I., Professor dr. eng. Antonyuk V., senior researcher dr. eng. Kyrychenko O., Professor dr. eng. Vashchenko V. .. 20

STUDY OF EFFECT OF INITIAL AND SUBSEQUENT HEAT TREATMENT OF CONSTRUCTIONAL STEELS ON PROPERTIES OF JOINT WELDS PRODUCED BY ELECTRON BEAM WELDING
Engineer Izyumov Artem A., Engineer Artem Gubko D. .. 24

A REVIEW OF RESIDUAL STRESS MEASUREMENTS BY HDM AND OPTICAL TECHNIQUES
M.Sc.Barile C. PhD, Prof. Casavola C. PhD, M.Sc. Pappalettera G. PhD, Prof. Pappalettere C. .. 27

THE POSSIBILITY OF USING WASTE MOLD SAND FOR ADSORPTION OF ACETIC ACID
Assoc. Prof. Štrkalj A. PhD., Assoc. Prof. Glavaš Z. PhD., Prof. Hršak D. PhD. .. 30

CALCULATION ALGORITHM FOR CYCLE LENGTH OF SIGNALIZED INTERSECTION
Assist. Prof. PhD Saliev D. .. 33

MATERIALS

ALUMINUM NANOSTRUCTURED COATINGS AS ALIGNMENT LAYERS FOR LIQUID CRYSTAL MIXTURES
Prof. Dr. Alexander G. Smirnov, Dr. Andrey A. Stasiapanau, Prof. Dr. Victor V. Belyaev, Dr. Denis N. Chausov 35
CALCULATION ALGORITHM FOR CYCLE LENGTH OF SIGNALIZED INTERSECTION

Assist. Prof. PhD Saliev D.
Technical University of Sofia, Faculty of transport, Department of Combustion Engines, Automobile Engineering and Transport, Bulgaria
durhan_saliev@tu-sofia.bg

Abstract: Traffic lights regulation reduces conflict points in intersection of traffic flows trajectory and provides their safety crossing. The main in installation of traffic lights is determination of a cycle length which guarantee minimum waiting time of traffic flows at the junction. The paper presents a calculation algorithm for the cycle length of a traffic light junction according to traffic flows intensity, saturation flows and day periods which are have different intensity.

Keywords: TRAFFIC FLOWS, CYCLE OF TRAFFIC LIGHT, TRAFFIC LIGHT JUNCTION

1. Introduction

Traffic lights regulate road traffic across junctions where the conflict zones between traffic flows are not separated from one another. They are applied in order to increase safety and traffic capacity. The major drawback of regulation with traffic lights there is a waiting time of all flows crossing intersection [2]. Traffic light regulation calls for the implementation of certain conditions. The most influential factor when deciding whether or not to use a traffic light at a given junction is the intensity of the traffic flows passing through this junction.

2. Prerequisites and means for solving the problem

The main issue when regulating junctions by traffic lights is how to determine the optimal cycle length for the existing road and traffic conditions. For achieving minimum waiting times, it is necessary to first determine the periods of the day when it is possible to use different cycle lengths to regulate the traffic at a given junction, thus differentiating rush hours from the other periods of the day.

The length of the traffic light cycle is to a large extent affected by the number and type of phases for allowing traffic to pass through a given junction. They are determined according to the specific traffic and road conditions for a given junction as follows:

- Intensity of traffic flows by direction, which largely affects the decision which traffic flow to cross the junction in each of the phases;
- Type of intersection – three-way intersection, four-way intersection, etc.;
- Junction configuration – the width and number of entry and exit lanes are decisive;
- Complexity of the junction – it depends on the number and type of conflict points between traffic flows;
- Others – coordination with other traffic lights, pedestrian crossings, left-turn prohibition and other considerations related to traffic organization in the junction area.

The safe passage of traffic flows between the different phases is ensured by the change intervals, which guarantee that the last car of the exiting traffic flow will have exited the conflict zone by the time the first car of the entering traffic flow reaches it. The change intervals depend on the configuration and geometric dimensions of the junction. From the point of view of crossing the junction safely, their duration is the part of the traffic light cycle which cannot be changed.

3. Results and discussion

The requirement for optimal cycle length was achieved by developing a cycle length calculation algorithm.

The basic input data for the algorithm are:

- Intensity of traffic flows crossing the junction (I_a), veh/s;
- Length of the period of the day whereof the calculations are made (t_pc), s;

- Minimum green time for each phase (t_g_min), s.

The number and type of phases for allowing traffic flows to pass through the junction are determined successively. If traffic lights are available, they may not be changed.

The change periods are determined according to the established conflict zones during changes of phases. One of the methods used for this purpose is described by Moore [3].

The saturation flow is determined based on the calculated change period.

It is assumed that the change period for a given phase (t_pl) is equal to the transition time of a vehicle through the intersection (t_pf). It is determined with the help of a study which includes measurements of the time that the vehicles in the queue need to set off when the traffic light changes to green. The transition time of each car in the queue and the time between them are both measured. The results show that the headway between vehicles (∆t_bc) passing through the signalized intersection is one second.

According to the transition time of a car and the headway, the following values are determined:

\[
A_v = \frac{t_{pc}}{\Delta t_{bc}}, \text{veh} \tag{1}
\]

\[
t_p = 2t_{pc}, \text{s} \tag{2}
\]

Where:

A_v - Number of vehicles entering the intersection during the transition time of a vehicle, veh;

\[t_p - \text{Transition time of } A_v, \text{s}.\]

The saturation flow of a single lane of the roadway is determined:

\[
I_{pl} = \frac{A_v}{t_p}, \text{veh/s} \tag{3}
\]

The saturation flow is determined by using (4).

\[
I_f = I_{pl} \times I_l, \text{veh/s} \tag{4}
\]

Where:

I_l - Number of lanes for the respective flow.
Each flow of the given phases requires enough green time \(t_{fg}^f \) to guarantee its smooth passing during the period of the day for which the calculations are made. The required green light time is calculated as follows:

\[
t_{fg}^f = t_{pd}^f \cdot \frac{I_f}{I_p} \text{, s (5)}
\]

After calculations for each flow are made, the sum of the green times required for each phase \(\sum_{i=1}^{n} I_{di}^f \) is calculated as well, where “\(i \)” is the number of phases.

We calculate the sum of all change periods for the whole period of the day for which the cycle length is calculated by using the following equation:

\[
\sum_{i=1}^{n} t_{di} = t_{pd} - \sum_{i=1}^{n} t_{fg}^f \text{, s (6)}
\]

We determine the number of cycles for the period of the day whereof the calculations are made \((N_{cp}) \):

\[
N_{cp} = \frac{\sum_{i=1}^{n} t_{di}}{\sum_{i=1}^{n} t_{fi}} \text{ (7)}
\]

The cycle length is calculated as follows:

\[
t_c = \frac{t_{pd}}{N_{cp}} \text{, s (8)}
\]

After calculating the cycle length, we calculate the green time for each phase of the cycle. For this purpose, the following ratio is used:

\[
\gamma_i = \frac{I_{fi}}{I_{dfi}} \text{ (9)}
\]

The green time for each phase is calculated according to (9).

\[
t_{fg}^f = \frac{t_{fi}}{\gamma_i} \text{, s (10)}
\]

One constraint of the algorithm is the provision of minimum green time for each phase.

A generalized block diagram of the calculation algorithm for cycle length for signalized intersection is shown in fig. 1.

The determined cycle length is optimal for the intersection in the existing traffic conditions. The lengths of the phases can be further optimized by following the algorithm described in detail in [1].

4. Conclusions

The presented calculation algorithm for cycle length of signalized intersection has the following major advantages:

1. Allows calculation of the cycle length for each period of the day regardless of its duration.
2. The input data are determined by a single analysis of the intensity of traffic flows.
3. Little input information is required for the determination of change periods.
4. A value of the cycle length, which is optimal in the existing traffic conditions, is determined.
5. The determined green times guarantee the smooth passing of cars during the given period of the day.

References