
DOMAIN ONTOLOGY OF THE EQUIPMENT IN MANUFACTURING SYSTEMS

ДОМЕЙН ОТНОЛОГИЯ НА ЕКИПИРОВКАТА В ПРОИЗВОДСТВЕНИ СИСТЕМИ

M.Sc. Stoyanov K.1, Ph.D. Gocheva D.2, Prof. Ph.D. Batchkova I.2, Prof. D.Sc. Popov G.1

Technical University of Sofia1, University of Chemical Technology and Metallurgy - Sofia2, Bulgaria

E-mail: kostadin_sto@abv.bg, dani@uctm.edu, idilia@uctm.edu, gepop@tu-sofia.bg

Abstract: This paper presents the developed domain ontology of the equipment in manufacturing systems in order to be used in the field of

reconfigurable manufacturing systems (RMS). The ontology meets the requirements of the meta-class "Equipment", which is part of the

developed meta ontology based on the standard for integrated systems for the production and management IEC / ISO 62264. The article

explains various properties and class restrictions of the developed ontology. Web Ontology Language (OWL 2) and Protégé 4.3 as an editor

and knowledge acquisition tool are used. Special attention is given to the use of ontology reasoning to infer additional information from the

facts stated explicitly in ontology - an important feature, used to perform classification, sorting and assembly operations and consistency

checking.

Keywords: IT, ontologies, interoperability, IEC / ISO 62264, RMS.

1. Introduction

In the modern world the manufacturers need to satisfy the fast

changing demands of the consumers in order to be competitive on

the globalized market. This leads to developing new solutions in

the development and manufacturing of the final product. One of

the possible solutions is the development of reconfigurable

manufacturing systems. These systems would allow faster

implementation of the designed manufacturing systems and the

result would be reduction of the time needed for the manufacturing

of the final product. However, these reconfigurable manufacturing

systems still have too many problems – hardware and software –

that prevent their mass deployment on the world market. One of

the main software problems is the interoperability issue that leads

to the use of too many devices and the implementation of different

software solutions in order to establish a connection and proper

transfer of information between the different machines in the

system. The results of this problem are increased manufacturing

time and increased price for the final product. According to [1] the

interoperability issue may be solved through the use of some

standards such as IEC/ISO 62264, ISO 10303 (STEP) and IEC

61499 [2, 3, 4] and shared ontology. The developed domain

ontology presented in this paper is one of four ontologies that are

developed to match the IEC/ISO 62264 standard and merged in a

developed meta ontology based on the same standard in order to

work together. The purpose of the development of the four

ontologies is to capture the basics of the manufacturing processes

where the Equipment ontology is the most complex of the four

because of the relations between the different individuals and

classes that corresponds to different sensors, tools, machines,

systems and so on. The developed ontologies will be used by

specially developed software for the generation of control

programs and in such way, illustrating an approach for solving the

interoperability issue in reconfigurable manufacturing systems.

2. A short overview of the applied techniques

The Web Ontology Language OWL 2 [5] accepted as a World

Wide Web Consortium (W3C) Recommendation from 11

December 2012 is a powerful knowledge representation language;

it has been applied successfully for knowledge modelling in many

application areas [6]. As a descriptive language, OWL 2 is used to

express expert knowledge in a formal way, and as a logical

language, it is used to draw conclusions from this knowledge. The

formal semantics allows humans and computer systems to

exchange OWL ontologies without ambiguity as to their meaning,

and also makes it possible to use logical deduction to infer

additional information from the facts stated explicitly in an

ontology [7]. Every OWL 2 ontology is a machine-processable

formal description of a domain of interest and consists of the

following three different syntactic categories: Entities,

Expressions and Axioms. Entities, such as classes, properties, and

individuals are identified by IRIs. They form the primitive terms

of an ontology and constitute the basic elements of ontology.

Expressions represent complex concepts in the domain being

described: new classes as a result of Intersection, Union, Negation,

Existential and Universal Property Restrictions, Cardinality

Restrictions. Axioms are statements that are asserted to be true in

the domain being described and allow relationships to be

established between Expressions: Subclass Axioms, Equivalent

Classes, Disjoint Classes, Subproperties, Equivalent Properties,

Disjoint Properties, Inverse Properties, Property Domain,

Property Range, Inverse, Functional, Transitive Properties, etc.

These three syntactic categories are used to express the logical part

of OWL 2 ontologies - that is, they are interpreted under a

precisely defined semantics that allows useful inferences to be

drawn [5]. The ability to infer additional knowledge (deductive

reasoning [6]) is of great importance for designing and deploying

OWL ontologies. A particular kind of deductive reasoning on the

ClassAssertion axiom, the task of computing the individuals that

belong to a given class (or set of classes) is called instance

retrieval. If the task is to find out whether one particular individual

belongs to the given class, it is called instance checking.

Analogous tasks exist for SubClassOf axioms: computing all

subclass relationships between a set of classes is called

classification, and checking a particular subclass relationship is

called subsumption checking [6]. Very important reasoning task is

consistency checking, the task of determining whether a class or an

ontology is logically consistent or contradictory. Instance retrieval

and classification tasks can be solved by using many individual

instance and subsumption checks. The concepts of soundness (all

computed inferences are really entailed), completeness (all

entailed inferences are really computed) and computational

complexity (time and resources needed for a reasoning task) are

very important for the choice of suitable reasoner. Lack of

completeness is sometimes acceptable if it allows for simpler or

mailto:kostadin_sto@abv.bg
mailto:dani@uctm.edu
mailto:idilia@uctm.edu
mailto:gepop@tu-sofia.bg

more efficient implementations, but the lack of soundness is

usually not desirable [6]. Sound and complete OWL 2 reasoning is

of high complexity - double exponential computational complexity

- N2ExpTime. The OWL 2 new profiles (OWL 2 EL, OWL 2 QL,

OWL 2 RL) restrict the used syntactic categories to improve

complexity and practical performance, however with limitation of

expressivity. Since the best balance between language expressivity

and reasoning complexity depends on the intended application [7],

and modeling of the equipment in the manufacturing systems

needs more language constructions than the new OWL 2 profiles

offer, we decided to tackle computational complexity using the

optimized reasoning algorithm - HermiT. In [8] the performance

of reasoning in HermiT is compared with that of FaCT++ and

Pellet - two other popular and widely used OWL 2 reasoners.

HermiT ontology reasoner supports all features of the OWL 2

ontology language, and it correctly performs both object and data

property classification/reasoning tasks and is much faster than

other reasoners. HermiT consists of components that together

implement a sound and complete OWL reasoning system [8].

HermiT also implements a novel classification algorithm that

greatly reduces the number of consistency tests needed to compute

the class and property hierarchies [8].

3. Domain ontology “Equipment”

The developed ontology contains 156 classes, 1411 axioms, 34

properties, 57 different individuals. Protégé 4.3 is used as the most

popular free ontology editor and HermiT 1.3.8 is used as a highly-

efficient OWL Reasoner suitable for the domain of the equipment

in the manufacturing systems.

3.1. Classes

The main class in this ontology is the class Enterprise. The

complementary class Value Partitions is used as a “design

pattern”. The class Value Partitions contains covering axioms used

in different classifications, sorting and assembly operations using

the HermiT reasoner. The class Enterprise follows the

terminology, models and structure of a general enterprise in

accordance with the world-wide accepted standard IEC/ISO 62264

for enterprise-to-control system integration [3] and has the

following hierarchy – Enterprise, Site, Area, ProductionLine,

WorkCell, EquipmentModule and ControlModule (each class is a

sub class of the previous one). The class ControlModule is the

lowest level of the hierarchy defined by the IEC/ISO 62264

standard and contains two classes - Sensor and Actuator. The

Sensor class contains a collection of classes associated with

different types of sensors. The physical object (the sensor itself) is

presented via individuals described by various data properties and

asserted to their appropriate class. The class EquipmentModule

contains few additional classes except the class ControlModule

which are Accessory, Module and Tool. The Accessory class

includes a collection of classes for different accessories that could

be added to the different machines such as vises, safety guards, and

lamps and so on. The named Module class contains

CNCMachineTool_Module and FESTOModule where the latter

contains collection for the modules needed for the assembly of the

FESTO Sorting, Processing and Handling workstations. Similarly,

to the sensors each module is described via individuals and data

properties. The named class Tool contains a collection of named

and defined classes that have restrictions and can classify different

individuals by different characteristics. For example, the two

defined classes AllCarbideTool and AllHSSTool will collect all

tools of the ontology which are made of carbide or HSS (High

Speed Steels) respectively when the ontology is inferred. Each tool

is described in a similar way as the modules and the sensors. The

other sub classes of the class Tool are DrillingTool, MillingTool,

ReamingTool and TappingTool. Each one of the classes contains

individuals describing different tools and asserted to appropriate

tool type class. Through the use of defined sub classes, the

ontology infers some sorting operations such as parting the

different tools according to the material they are made of,

according to preliminary defined diameter range or according to

the tool size (large, medium or small). For instance, the named

class DrillingTool contains the following named classes

DrillingTool_Diameters, DrillingTool_MadeOf and

DrillingTool_Sizes and one defined class that will sort all of the

drilling tools according to preliminary defined range for the

diameters of the drills when the ontology is inferred -

DrillingTool_DiametersRange. The class DrillingTool_Diameters

contains named classes for the different diameters of the drills and

each individual is asserted to the appropriate class according to

their diameter. For example, the named class DrillingTool_Fi_1.6

contains all drilling tools of the ontology that have a diameter of

1.6 [mm]. The purpose of this classification is to create a location

for the created individuals through some of their main properties.

In our case this is the diameter of the tool (for cylindrical tools).

From that point on it is better to create defined classes that can

allocate the individuals according to their properties and the

intended needs of the ontology because every single individual

may have hundreds of properties and doing the job manually is

nearly impossible. The DrillingTool_MadeOf contains two

defined classes that can allocate the individuals according to the

material they are made of (DrillingTool_Carbide and

DrillingTool_HSS). As for the last class - DrillingTool_Sizes – it

sorts the named classes for the diameters of the individuals into

groups in a broader meaning (Large, Medium or Small) according

to preliminary defined diameter range for each group. The classes

and the operations for the other types of tools are similar to the

DrillingTool class and will be not discussed any further. The

hierarchy of the Tool class is shown on Fig.1.

The WorkCell class is equivalent to machine level. On this level

sets of named and defined classes can be created and through the

use of object properties different individuals from the lower levels

of the hierarchy can be linked to form machines. For instance,

there is a sub class of the WorkCell class (FESTOWorkstantions)

that when the ontology is inferred all of the appropriate sensors

and modules of the lower levels of the hierarchy will be allocated

to form groups of the FESTO workstations (Sorting, Handling,

Processing and so on) as single machines. From this point on for

the super classes of the WorkCell class (ProductionLine, Area,

Site) it is better to use covering axioms for the creation of different

systems, areas and sites. For example, the ProductionLine class

contains four defined classes. These classes correspond to the level

of a system (each class represent different system) so when the

ontology is inferred these four defined classes form four different

systems. Each system is composed of at least two FESTO

workstations that work together and that were defined on the lower

level (on the level of the WorkCell class) as machines There is no

limitation to the maximum number of FESTO workstations that

are composing each one of the systems.

Fig. 1: Tool class hierarchy

3.2. Properties

A. Object properties

The ontology has ten object properties divided into three groups.

The first one is hasDiameter and it is used alongside with the

defined class Tools_Size as a covering axiom for the size of

different tools. It is used as a restriction of the classes and defines

three groups of sizes – Large for cylindrical tools with diameters

larger than 10 [mm], Medium diameters in the range of 5 [mm] to

10 [mm] and tools with Small diameters which are smaller than 5

[mm]. As you can notice all of the ontology tools are cylindrical

but that doesn’t mean that the covering axiom is restricted to

cylindrical tools only. For example, we may create another object

property hasInsertSize and to use it to create covering axioms for

prismatic tools for instance and so on. So when the class hierarchy

is inferred, all of the tool classes are allocated to their places, so in

this example we have allocation of classes while the second object

property of the ontology is used to allocate individuals. The second

object property group of the ontology is isPartOf and contains the

sub properties isPartOfSensor, isPartOfModule, isPartOfMachine

which are used to illustrate the relation of the different individuals

among each other. As was mentioned earlier in this paper the

classes Modules and Sensors hold collections of different modules

and sensors. Each individual in this collection is asserted the

appropriate object property. For example, the individuals that

represent different sensors are related to the appropriate module

via the object property isPartOfModule. In this way if we accept

that a collection of sensors that are part of some module, and that

a collection of different modules forms a machine then we can

create defined sub classes of the class WorkCell and easily infer

the knowledge for the parts that are needed to assemble a machine

by allocating the different individuals to their respective defined

class. This method is illustrated by three of the FESTO

Workstations – Sorting station, Handling station and Processing

station. Each station consists of assembly plate (in the ontology it

is referred as the appropriate Base), modules and sensors. The Base

is (as an individual) located in the named class of the station, then

we create defined sub classes for the available modules and sensors

and by inferring the ontology all of the individuals are allocated to

these classes by forming a compact description of the elements

needed to assemble the appropriate workstation. The relations

among the individuals are shown on Fig. 2.

Fig. 2: Relation of individuals

The third object property group of the ontology is consistOf and

contains the sub properties consistOfMachine, consistOfSystem,

consistOfArea, consistOfSite which are used alongside the defined

classes System_Creation, Area_Creation, Site_Creation as

covering axioms for the creation of different systems and to

illustrate the relation between the different classes. These

properties are used in a way similar to the first and second group

of properties so they won’t be discussed any further.

B. Data properties

The data properties are used to describe the characteristics of the

different individuals. There are 32 data properties in the ontology.

As you can see from Fig. 3 the data properties are divided in some

categories. The major one is ToolsValues which are used to

describe the different properties of drills, mills, tappers and

reamers and assign them values. Some of the properties are

additionally divided into groups because they are specifically

reserved for only one type of tools. For example, in the

TappingToolsValue group, the data properties are

hasPitchSizeValue and hasThreadValue which are specific for the

tapping tools. Some of the properties do not have groups and that

is because they are universal for the ontology and each individual

must have them in order to be described properly.

Fig. 3: Data properties

3.3. Restrictions

In this ontology the main types of restrictions that are used are

Quantifier restrictions or more specifically Existential restrictions

and hasValue restrictions. The Existential restrictions are used in

the Tools section of the ontology so that the individuals could be

allocated according different criteria. For example, there are two

defined sub classes – MillingTools_Carbide and

MillingTools_NumberOfSlots_Little – of the MillingTool class.

The MillingTools_Carbide class has the Existential restriction

MillingTools and (hasMaterialValue some

xsd:string[pattern "Carbide"]) and the other class -

MillingTools_NumberOfSlots_Little - has Existential restriction

MillingTools and ((hasNumberOfSlotsValue some

xsd:integer[>=3]) and (hasNumberOfSlotsValue some

xsd:integer[<=3])) and (hasMaterialValue some

xsd:string[pattern "Carbide"]). When the ontology is

inferred the MillingTools_Carbide class is collecting all of the mill

tools that are made of carbide and the second defined class

MillingTools_NumberOfSlots_Little is collecting all mill tools that

are made of carbide and have three slots. Because of the additional

restriction to the second class, it is inferred as a sub class of the

defined class MillingTools_Carbide although that these two

classes are created on the same hierarchical level. In this way the

sub class is going to collect two of the three mills because the third

one has four slots and does not meet the specific restrictions of the

MillingTools_NumberOfSlots_Little class. So the third mill will be

inferred in the class MillingTools_Carbide. Another example is

made by adding the Existential restriction Tools and

(hasMaterialValue some xsd:string[pattern

"Carbide"]) to the class AllCarbideTools which is sub class of

the class Tool. The class is collecting all of the tools in the ontology

that are made of carbide. So having in mind the previous example,

when the ontology is inferred the group of the mill classes is

allocated as sub class of the AllCarbideTools class.

4. Conclusions

The developed domain ontology in this study aims to represent the

equipment in the manufacturing systems and the relations between

the different equipment levels. The ontology, merged along with

three others in meta ontology is going to be used by specially

developed software for the generation of control programs thus

illustrating an approach for solving the interoperability issue in the

field of reconfigurable manufacturing systems. Some of the main

benefits of the developed ontology are:

 the hierarchy is based on the IEC/ISO 62264 standard which

defines the basic structure of the ontology;

 through the use of object properties, it is possible to create

sensors, modules and machines (collections of different

individuals);

 through the use of object properties and covering axioms, it

is possible to create systems, areas and sites (collections of

different defined and named classes);

 through the use of Quantifier restrictions and hasValue

restrictions, it is possible to create sorting operations for the

different individuals based on data properties.

Acknowledgments

The creation of this piece of work was possible thanks to the Ph.D.

project “Developing approach for interoperability for

reconfigurable manufacturing systems” - contract № 152 ПД

0015-05.

Literature

[1]. Chen D., Dassisti M., Elvesaeter B., “Enterprise Interoperability

Framework and knowledge corpus”, 2007.

[2]. IEC61499, International Standard IEC61499, Function Blocks, Part

1 - Part 4, International Electrotechnical Commission (IEC),

Technical Committee TC65/WG6, IEC Press, January, 2005.

[3]. IEC 62264-1:2003, Enterprise-control system integration -- Part 1:

Models and terminology.

[4]. Pratt M. J., „Introduction to ISO10303 – the STEP Standard for

Product data exchange“, Journal of Computing and Information

Science in Engineering 1(1), pp.102-103, 2001.

[5]. OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax (Second Edition) W3C Recommendation

11 December 2012, https://www.w3.org/TR/owl2-syntax/.

[6]. Krötzsch M., “OWL 2 Profiles: An Introduction to Lightweight

Ontology Languages,” Proc. 8th Reasoning Web Summer School,

LNCS 7487, Springer, 2012, pp. 112–183.

[7]. Krötzsch M., Simančík, F., Horrocks, I., Description Logics. In

IEEE Intelligent Systems, volume 29:1, pp. 12–19. IEEE 2014.

[8]. Glimm B., Horrocks I., Motik B, Stoilos G, Wang, Z., HermiT: An

OWL 2 Reasoner, Journal of Automated Reasoning, October 2014,

Volume 53, Issue 3, pp 245-269.

https://www.w3.org/TR/owl2-syntax/

