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There are many estimation techniques, which are used in Thermal Response Test (TRT) data analysis. The commonly used
models, Line Source Model, Cylindrical Source Model, numerical models do not take into account the nonlinear system effects like
for example the phase change. The present work suggests the use of the input/output black box identification technique for TRT data
analysis. A nonlinear autoregressive exogenous (ARX) model structure and stochastic search algorithms are used to estimate model
parameters. Artificial intelligence techniques, Genetic Algorithm and Particle Swarm Optimization Algorithm are employed to avoid
local maxima problems. The study is based on data sets obtained during real TRT tests without phase change effects. All analyses are
performed in MATLAB environment. The purpose of this paper is to verify that the proposed algorithms are suitable for processing
of TRT data with the aim of future identification of thermal parameters of boreholes with phase change effects. The given solution is
also useful when common techniques fail in search for the global optimum if the search space is not differentiable or linear in the

parameters.
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INTRODUCTION

Thermal Response Test (TRT) 1is an
internationally approved technique to identify
geothermal underground parameters like effective
ground thermal conductivity and borehole thermal
resistance. It is considered to be the method which
gives the highest accuracy of evaluation. Generally,
these tests are performed with heat injection, using
the same assumed power level as the one planned
by the Borehole Heat Exchanger (BHE) system.
For first time TRT was presented by Mogensen —
his installation was designed as an immobile system
[1]. Later, TRT was developed as a mobile
measurement installation at the Oklahoma State
University (USA) by Austin [2] and at the
Technical University Lulea, Sweden [3]. Now, this
type of measurement is used also in Germany [4],
Canada, Norway, Netherlands, England, Turkey [5]
and Chile [6]. Several TRTs are done in Bulgaria,
too. Some activities in Bulgaria preceded the first
official TRT [7].

Algorithm Overview

The genetic algorithm (GA), first proposed in
[8], is a method for solving optimization problems
which are not easy manageable by standard
optimization methods, e.g. when the objective
function is discontinuous, non-differentiable,
stochastic, or highly nonlinear. It is used for both

constrained and unconstrained optimization
problems.

GA concept is taken from the principles of the
evolution of the species by survival of the fittest.
Like in a population of organisms [9] the solutions
are created by reproduction of solutions and
compete for survival in the next iteration. At each
step the randomly selected individuals of the
current population become parents and produce the
children of the next generation. Over successive
generations, the population improves to the optimal
solution.

In the initial population P(0), encoded randomly
by strings [10], the more fit elements of each
generation (¢) are selected and processed by the
basic genetic operators, crossover, and mutation, to
create the next generation. On the basis of the
evolution principles the best chromosome of a
candidate solution is preserved. Thus the GA uses
three main types of rules at each step towards the
next generation of the current population: Selection
rules select the individuals, called parents, which
contribute to the population at the next generation;
Crossover rules combine two parents to form
children for the next generation; Mutation rules
apply random changes to individual parents to form
children.

The computational procedure is illustrated by
the following GA pseudo code [11]:

Procedure GA
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begin
t=0
initialize P(t)
evaluate P(t)
while not satisfy stopping rule do
begin
t=t+1
select P(t) from P(t1)
alter P(t)
evaluate P(t)
end
end

In the present work, the GA is employed for
model identification in Autoregressive integrated
moving average (ARIMA) models because of the
following very powerful characteristic:
simultaneous searching of a population of points,
not a single one, which results in finding the
approximate optimum quickly and without falling
into a local optimum. Moreover GA is free from the
limitation of differentiability, unlike other
mathematical techniques.

Concepts of the Particle Swarm Optimization
Approach

As the neural network is a simplified model of a
human brain and the genetic algorithm is inspired
by the biological evolution, an optimization
approach known as swamp intelligence is inspired
by the collective behavior of the individuals in a
social system when interacting with the
environment and each other. Two of the popular
swamp inspired methods of computational
intelligence area are Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO).

The first is inspired by the behavior of ants and
has many successful applications in discrete
optimization problems [12].

The PSO concept was originally developed for
graphical simulation of the choreography in a bird
flock or a fish school and employed afterwards as
an optimizer. It was proposed in [13] as a
population based stochastic optimization technique,
inspired by social behavior of bird flocking or fish
schooling. PSO simulates the bird flocking
according to the following scenario: a group of
birds are randomly searching only one piece of
food in an area. They do not know where the food
1s, but do know how far it is in each iteration. The
best searching strategy is to follow the bird nearest
to the food.

In solving optimization problems by using this
scenario, each solution in the search space is “bird”,

called “particle”. All the particles have fitness
values, which are evaluated by the fitness function
to be optimized. The particles have flying velocities
and fly through the problem space by following the
current optimum particles.

PSO shares many similarities with evolutionary
computation techniques. Like in the GA, the system
is initialized with a population of random solutions
and searches for optima over successive
generations. However, unlike the GA, the PSO has
no evolution operators such as crossover and
mutation. The potential solutions, called particles,
fly through the problem space by following the
current optimum particles.

At the first step in PSO the position and velocity
of the particles are randomly initialized. In every
iteration, each particle is updated by following two
"best" values. The first one is the best position
(fitness) it has achieved so far denoted by ppes. (The
fitness value is also stored). The second one is the
best position, obtained so far by any particle in the
population, called global best value and denoted by
ZGres. Each particle communicates with its
topological neighbors and knows the best position
found so far by any of them. If a particle takes part
of the population as its neighbors, the best value is
a local best and is called /pesr.

After finding the two best values, the particle
updates its velocity and position by the following
equations (1) and (2).

v[ ] =v[] + cl *rand( )*(pbest[ | - present[ ]) +
+ c2*rand( ) *(gbest[ | - present[ ]) (1)

present[ ] = present[ ] +v/[], (2)

where v/ ] is the particle velocity, present/ | is
the current particle (solution). pbest[ | and gbest[ ]
are defined as stated before. rand () is a random
number between (0,1). c¢I, ¢2 are learning factors.
Usually ¢/ =¢c2 = 2.

The pseudo code of the procedure is as follows:

for each particle
Initialize particle
end
do
for each particle
Calculate fitness value
if the fitness value is better than the best
fitness value (pbest) in history
set current value as the new pbest
end



Choose the particle with the best fitness value
of all the particles as the gbest
for each particle

Calculate particle velocity according
equation (1)

Update particle position according
equation (2)

end

while maximum iterations or minimum error

criteria is not attained

On each dimension a maximum velocity Vi is
specified by the user as a limit of the particles’
velocities.

INSTALLATION FOR IMPLEMENTING OF
THERMAL RESPONSE TEST

An original construction of a Thermal Response
Test rig has been built recently at the Technical
University of Sofia, branch Plovdiv. The equipment
for implementing of TRT is situated on a mobile
trailer consisting of two parts. The first one
contains the working installation. The second part
is formed as a living room for the investigators,
who will implement the in-situ tests. The scheme of
the installation is shown in Fig. 1. It consists of the
following parts: electrical boiler 1, calorimeter 2,
pressure watch 3, expansion tank 4, thermo —
manometer 5, filter 6, circulation pump 7, de-
aeration pipe 8, quick couplings 9, valves 10 and
electrical unit 11. A 41,10m deep hole was drilled
on the territory of the Technical University — Sofia,
branch Plovdiv. The borehole has a diameter of
0.18 m and has been backfilled with 11% bentonite
and 2% cement solution. There are two temperature
sensors Pt 100 for measuring the inlet and outlet
borehole temperatures. There are five other
temperature sensors placed at different depths
inside the borehole.
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Fig.1. Installation setup

THERMAL RESPONSE TEST - EXPERIMENT
AND EVALUATION

The tests were implemented in January, March
and April 2009. The following parameters were
measured: the inlet and outlet fluid temperatures of
the borehole, the ambient air temperature and five
temperatures in the borehole body. The electrical
power (about 1500 W) was controlled and
maintained constant during the whole test. The flow
rate of water was 4.06 1/min.

There are different methods to evaluate the
experimental data and to calculate the unknown
thermal conductivity A and borehole thermal
resistance. The Line Source Model (LSM) is the
widely used and simplest method [3]. The delivered
heat is considered as coming from an infinite line
source (the borehole). The following equation
represents the heating process:

_ 0 o1 1 [ [4e]_
Tf’m_47rﬂH1n(t)+[H[47r/1(ln[rb2j )/J+RbJ+TS}
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U

for a 3)
where T, =(T,, +T,,)/2- mean fluid inlet/

outlet temperature, K;
QO — delivered heat power, W;
A — thermal conductivity, W/mK;
H — borehole depth, m;
t — time from start, s;
a — thermal diffusivity, m?/s;
rp —radius of the borehole, m;
y=0.5772 — Euler’s constant;
R;, — borehole thermal resistance, mK/W;
T — initial soil temperature, K.

Test Evaluation

The average undisturbed ground temperature 7
is a key parameter in Eq. (3) and should be
measured prior to the test start before switching on
the electrical heaters, when the borehole is at
thermal equilibrium with its surroundings. 7, was
determined by pumping the heat carrier fluid out of
the borehole pipes and measuring its outlet
temperature over a time of 10s. 7, was then
calculated as the average of the measurement data.
In the presented experiments, 7y was found to be
about 16.3°C. As soon as T is measured the electric
heaters are switched on and a constant heat starts to
be injected in the BHE.

The flow rate was fixed at a constant value
during the tests. The electrical heater power and the
electrical power of the circulating pump were
maintained constant automatically. For the



experiment purpose the installation was filled with
water and a pressure of 2.2 bars was established.
Most of the main characteristics of the performed
Bulgarian TRTs in 2009 are shown in Table 1.

Tablel. Main characteristics of the Bulgarian TRTs
carried out in 2009

January March April
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Date 11-21 16-24  13-17
Duration, days 10 8 4.3
Flow rate, 1/ min 4.06 3.83 4.6
Electrical heater power, W 1500 2000 1500
Circulating pump power, W 100 100 100
Water pressure, bar 2.2 2.2 2.2
Undisturbed soil temperature, °C 16.3 16.3 16.35
Measuring interval step, s 60 60 60

The control of the test rig is the most
challenging part of the system. All data are
automatically controlled by a specially designed
system for the laboratory trailer needs, installed on
the control board. The system is fully automatic and
writes down all measured data in text files. If
appropriate software is available, the data collecting
process could be visualized in real time or after
finishing the experiment. In the experiments the
aim of a constant heat flow was realized by a
constant frequency control of the circulation pump
and boiler.

The application of equation (3) to the real
problem is connected with a systematic error,
which diminishes with time and increases with
borehole radius. Eq. (3) can be rewritten for
evaluation purposes in the form of:

T, (6) =k In(t) + k, @

Further on the test evaluation is based on Eq.
(4), which is fitted to the experimental data, and the
curve constants k; and k; are determined. Usually a
Least Squares Method (LSM) is used to calculate £;
and k;. The thermal ground conductivity 4 and the
borehole resistance R, can be adequately calculated,
by comparing Egs. (3) and (4) when the curve
parameters k; and k» are known. In this article
instead of LMS method, the GA and PSO search
approaches are employed to fit the data and to
compare the agreement.

Test Results

The mean fluid temperature in the borehole
(average temperature of the inlet and outlet fluid
temperature of the borehole) and the ambient
temperature are shown for the test done in January
in Fig.2. The figure shows that the experimental
fluid temperature rises slow and with small
deviations.

Fig.2. Profile of the mean fluid temperature in the
borehole and the ambient temperature in January 2009

The number of the data points is very large
(about 14400). In order to decrease the processing
time of the GA and PSO stochastic search
algorithms the number of the points was reduced by
a factor of 30, using averaged values. The averaged
trends of the same temperatures are showed in
Fig.3.

Test Data Evaluation, Using Standard LSM
Regression Method

The Line Source Model gives more exact
temperature estimations for longer terms of time. It
takes some hours to the real BHE to behave as an
ideal line source. Therefore, usually the data
correspondent to the first 7 to 30 hours of
experiment is not taken into account in the analysis.

Ambient and mean borehole temperature during TRT test
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Fig.3. The reduced number of values of fluid mean
temperature in the borehole and the ambient temperature
in January 2009

In the present work, this period is accepted to be
20 hours, as it depends on the estimated data. Fig. 4
shows the logarithmic time dependence of the
temperature and the slope of the associated
regression line. As stated previously, the thermal
conductivity 4 is related to the slope of the resulting
line by Eq. (4). The resulting value calculated
during the test for A is 0.83 W/mK and for R, —
0.532 mK/W.
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Fig.4. Logarithmic time plot of the mean
temperature for the entire test length in January
2009 (excluding the first 20 hours)

Test data evaluation, using artificial intelligence
methods

First we have to choose the input factors, which
are to be varied. In GA algorithm they are:

e Crossover_p — Crossover probability parameter;
e Mutation_r — Mutation rate.

Output parameter is AVSAE variable (error) end
value. It is the average value of the sum of absolute
errors between data and model outputs at the end of
the estimation process. If 50 generations are
performed in GA search, then last column in
variable AvSAE (50) is used. In the next step
central composite experiment design is performed.
Only one central point is used in case of obtaining
uniform value distribution in the parameter space.
The Matlab function “ccdesign” have been used for
this purpose. After that factor variance bounds are
chosen:

e Crossover p=0... 1;
e Mutation r=10.05... 0.5

Then matrix table is multiplied by factor n=10 in
case of running not only 9 but 90 tests, because
output value AvSAE () is statistically dependent on
the run. Now parameters are bounded to parameter
space, using Matlab function “coded2real”. Next
step is to randomize runs’ order in the test matrix.
The positions of the input variables in the
parameter space are shown in Fig.5.

Centrd Comnposite Design, 2 Factors
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Fig.5. Positions of the input variables in the parameter
space in GA tests

The varied factors in the PSO algorithm
are chosen to be:
e correction_factor;
e inertia.

The bonds chosen in this task are 1.6 to 2.4 for
the Correction factor and 0.4 to 0.8 for the Inertia
parameter. The central composite design for the
PSO — test and the factors’ variation in a Monte
Carlo simulation are presented respectively in
Fig.6.

Central Composite Design, 2 Factors
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Fig.6. Positions of the input variables in the
parameter space in PSO tests

Genetic algorithm-based search function developed
in Matlab

The Genetic Algorithm-based search procedure
is coded as a Matlab — function with the next
syntax:



[A B AVSAE] = ga_proc(err, popsize, crossover p,
mutation_r, n_generations),

where:

A is a vector, containing evaluated 'a' parameters;

B is a vector, containing evaluated 'b' parameters;

AVSAE is a vector of average sum of absolute
error of the model for all passed generations;

err is an error tolerance;

popsize is the size of population;

crossover_ p is the crossover
parameter;

mutation_r is the mutation rate;
n_generations is the number of generations.

probability

Test Results Particle Swarm Optimization
algorithm function developed in MATLAB

The Particle Swarm Optimization -based search
algorithm is written as a MATLAB — function with
the following syntax:

[A B AvSAE] = pso proc (swarm_size,
correction_factor, inertia, iterations, err),, where:
A is a vector, containing evaluated 'a' parameters;
B is a vector, containing evaluated 'b' parameters;
AVSAE is a vector of average sum of absolute
error of the model for all passed generations;
err 1s an error tolerance;
swarm_size is the size of the swarm;
correction_factor is  the  particle
correction factor;
inertia is the inertia factor

iterations is the number of iterations. number of

generations.

velocity

Data evaluation using statistical search approaches

The 90 data fitting experiments were performed
using GA and the same number of tests was carried
out for the PSO approach. The results for the first
10 tests in each case are listed in the Table 2 (GA)
and Table 3 (PSO).

Table 2. Monte Carlo simulation test results using GA

Run Cross Mutation AVSAE_ Rb Lambda
Number over _p r fin value

1 1 0.05 0.91366 0.19607 0.88152
2 0.2 0.05 1.0306 0.1 0.5
3 1 0.275 0.22162 0.47185 0.875
4 1 0.275 0.43971 0.1 0.67388
5 0.6 0.275 0.94431 0.68193 2.4496
6 0.6 0.5 0.8212 0.60871 1.4641
7 0.2 0.05 1.2259 0.78088 5.4823
8 1 0.275 0.28684 0.1 0.74713
9 02 05 0.40257 0.27394 0.68405
10 0.2 0.05 1.0425 0.1 0.5

Table 3. Monte Carlo simulation test results using PSO

Run Correction Inertia AVSAE_ Rb
Number _ factor fin_value

Lambda

1 2 04 021792 0.46962 0.90854
2 24 04 0.21815 0.65663 1.8056

3 1.6 04 0.63708 0.60304 1.4949

4 2 0.6 021785 0.46567 0.86166
5 2 0.8 0.21785 0.46085 0.85269
6 1.6 0.6 0.21785 0.45883 0.84906
7 24 0.6 02179 0.46255 0.80732
8 24 0.6 02179 0.59181 1.2595

9 24 04 021786 0.4573 0.84441
10 1.6 0.6 0.21785 0.45608 0.84335

The GA tests duration was measured to be
24:52.256 min and the duration of the PSO tests
was 21:05,385 min.

3D combined scatter plot of AvSAe versus GA
parameters (factors) during the tests is showed in
Fig.7 and Fig.8. Best values for the crossover
parameter and the mutation rate are 1 and 0,5. For
the correction factor and the inertia (in PSO) the
combination of the values 2.4 and 0.6 reports lower
error rate. The scatter plots show that all the factors
are significant.

In the next step all test results, reporting AvSAe
values higher than 0.3, were rejected. The
calculated average values of the remaining
estimated parameters are:

e in GA - tests:

Ry=0.4181513 mK/W; 1 =0.874063 W/mK;
e in PSO - tests:

Ry=0.49098 mK/W;, L =0.92624 W/ mK.

Scatter plot AVSAE vs. Crossover parameter and Mutation rate
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Fig.7. Positions scatter plot of AVSAE vs. crossover
parameter and mutation rate in GA tests



Scatter plot AVSAE vs. Correction factor and Inertia

AVSAE

Correction factor Inertia

Fig.8. Scatter plot of AVSAE versus correction factor
and inertia in PSO tests

AVSAE in GA and PSO versus Run number - no noise
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Fig.9. Value of AvSAE for both algorithms PSO
(diamonds) and GA (triangles)

The values of AVSAE (error) for both
algorithms PSO and GA for the tests with the same
number are compared in the Fig.9. The next Fig.10
shows sorted values of AVSAE for both algorithms
PSO (in red) and GA (in blue). It can be mentioned,
that PSO procedure reports more accurate
estimation of the system parameters.

Sorted AVSAE in GA and PSO
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Fig.10. Sorted by values of AvSAE for both algorithms
PSO (diamonds) and GA (triangles)

CONCLUSIONS

The estimated values of the thermal properties,
using different algorithms are presented in Table 4.

Table 4. Estimated values of the thermal properties,
using different algorithms

Algorithm Ry, mK/W A, W/ mK
LSM linear regression 0.532 0.83

GA 0.4181513 0.874063
PSO 0.49098 0.92624

The results demonstrate a good accordance in
estimates and possibility to apply GA and PSO —
based approaches in TRT data evaluation
procedure. In the reported case no phase change
process occurs in the BHE and the main advantages
of these two artificial intelligence techniques are
not demonstrated in their full range. So an
additional experimental investigation should be
performed to obtain data from the BHE, working
with COg, especially in a freezing/melting process.
That will give the possibility to identify thermal
parameters of Phase Change Materials (PCM) and
Slurries, used in thermal storages.

Based on the results of the parameter estimation
experiments additionally the next conclusions are to
be drawn:

1. PSO algorithm reports better performance than
GA. The calculation time for the two
procedures is similar because the time for
model evaluation is determining, equal in both
cases.

2. ARX Model structure (linear or nonlinear) is
well suited to parameter estimation procedure,
using usual or Evolutionary algorithms;
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Population size of 30 citizens is well enough
for low order lincar ARX model parameter
estimation procedure, using GA and PSO —
based approaches;

When using GA and PSO — based approaches a
number of 30 iterations gives in the linear case
a good estimation accuracy AvSAE = 0.2 in our
experiments;

When using GA and PSO — based approaches
accuracy and efficiency become statistical
parameters, which depends on the initial
population generation and mutation variance;
For low order linear ARX model parameter
estimation procedure the GA — based approach
gives a little bit higher performance than PSO —
based approach;

For low order linear ARX model parameter
estimation procedure the PSO — based approach
gives much more higher accuracy than GA —
based approach;

Significance analysis in all cases has shown
that all varied parameters are significant;

The best values for the Crossover parameter
and the Mutation rate in GA algorithm are: 1.0
and 0.5;

The best values for the Correction factor and
the Inertia rate in PSO algorithm are: 2.4 and
0.6.
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OLIEHKA HA TOIUIMHHUTE CBOMCTBA HA BEPTUKAJIEH I[TOJ3EMEH AKYMYJIATOP UPE3
METOJU HA U3KYCTBEHUA MHTEJIEKT

P. K. ITonos!, A. I. Teoprues?, JI. b. Jl)xonoBa-ATanacosa’
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[loctrenuna Ha 5 anpui, 2016 r.; npuera Ha 7 aBrycr, 2016 r.
(Pestome)

ChIllecTBYBaT MHOTO TEXHUKH 3a OIEHKA, KOUTO C€ M3IOJI3BAT 33 aHaNu3 Ha naHHW npu Onpenensae Ha TorumHHEN
Xapakrepuctuku (OTX). Haii-yecTo W3MOJN3BaHWUTE MOIETH KaTo Monen Ha JTWUHEWHUS W3TOYHHWK, Mojaen Ha
Humuaapuaans M3TOYHUK U YHCICHUTE MOJCIA HE OTYUTAT HEIMHEHHHM CHCTEMHH e(EKTH, KaTO HAIPUMEp MPOMHA
Ha (a30BOTO chcTostHUE. HacTosmmara paboTa mpeiara U3MoM3BaHETO Ha TEXHUKA 3a MISHTH(UKAIUS 110 METOa Ha
BXOJ / M3XOJ B 4YepHa KyTws 3a aHanu3 Ha maHHE or OTX. 3a omeHka Ha mapaMeTpuTe Ha MOJENIa ca HM3IOJ3BaHH
HennHeitHa aBTroperpecnonHa ex3oreHHa (APE) cTpykTypa Ha Mopena W CTOXAaCTHYHHU alTOpPUTMH 3a ThpceHe. C men
n30sirBaHe Ha npoOieMa Ha JIOKAJHUTE MAKCHMYMH C€ W3MOJI3BAT TEXHWKW HAa W3KYCTBEHUS WHTENIEKT: FCeHETHYEH
AITOPUTBM M ONTHMH3ALHOHEH AITOPUTBM C POSK Ha yacTUIM. M3cnenBaHeTo ce Oasupa Ha Habop OT MaHHH,
noJyueHu no Bpeme Ha peannu OTX TecToBe, mpu KOUTO JHUICBAT eekTh Ha (a30Bo npeodpasyBaHe. Benuku ananmusu
ce mpbpmBaT B MATLAB cpena. llenta Ha Tasu cratus e aa NOTBbpAM (akTa, Ye MPEUIOKECHUTE AITOPUTMHU Ca
noaxozsiuM 3a oopadorka Ha naHuu ot OTX c 1en ObAeo onpenensHe Ha TOIUIMHHHUTE MapaMeTpy Ha BEPTHKAIHU
TomIooOMeHHUIIM ¢ edekTH Ha (a3oBo mpeoOpasyBaHe. [IpeIOKEHOTO pEHICHHE € ChINO IIOJE3HO KOTaTo
OOMKHOBEHUTE TEXHHWKH HE YCIIABAT B THPCCHETO HA MIOOATHHS ONTUMYM, aKO MPOCTPAHCTBOTO HA THPCCHE HE €
JTU(epeHIIIPYEMO WK € HEJIMHEHHO B MapaMeTpUTE.
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