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In the current paper building on the sound theoretical foundation of state-space methods a model
for the boost converter is presented. Replacing some elements in the ideal power convertor with their
nonideal equivalent circuits results in a general vector nonlinear time-varying differential equation
describing the circuit behavior. Averaging the equation for one time period of the control frequency
approximates the equation with one that is time-invariant. Solving the obtained equation for a
particular equilibrium point results in a general expression for steady-state behavior. Subsequent
small-signal linearization around the steady-state transforms the model to a linear time-invariant
system (LTI). Using Laplace transform of the LTI system results in input—to-output and duty cycle-to-
output transfer functions. The results for steady-state and small-signal dynamic modelling are plotted
and some comments are made about optimum converter behavior.

Mooenupane na npoyecume 6 mpan3ucmoper nOGUULABAW NPeodpazysamen HA NOCMOAHHO
Hanpedxcenue (Bnaoumup /Qumumpos, Ilemvp Iopamnos). B cmamusma e pasenedan o6obuen
Mamemamu4ecKy AHAIU3 HA NOBUULABAW, Npeobpa3ysamen OMYUMAlKU PeaiHu 3aMeCmeauu cxemu
Ha 8CeKU Om eleMenmume 8 udediHama cxema. 3anucanume 8 CMaHOAPMHA Gopma HA NPOMEHIUBU
HA CbCMOosHUe HeTUHelHU OUpepeHyuanHU YPAGHEHUs, 3A8UcelU O 6PEeMEMO, Ca YCPEOHEeHU 3a eOUH
nepuoo Ha YNpasiaeauama uYecmomd, Kamo anpoKCUMAayusma no3oensea oa ce pazenedam
yCpeOHeHU HelUHeliHU YpasHeHus, onuceawu npoyecume ¢ cxemama. Ha maxna 6aza e nonyuen uspas
3a npedasamennama QYHKyus 6 YCmanosen pexcum Ha npeoodopazyeamens. Crnedsawyama cmvnka e
JUHeapuzayus OKOIO0 MO3U PEeHCUM, KOemo NO0360Ji8a NOLYYABAHe HA U3PA3U 3d NpedasameHu
dyHKyuu Ha npeodbpasysameisi CbOMBEMHO MeHCOY U3X00aA U CMYWABAULO 8b30elicUe UIU CUSHAT 3d
ynpagnenue. Taxka nonyuenume pe3yimamu ca NOKA3AHU 2papuuHo, U ca OUCKYMUPAHU HAKOU

cnedcmesust Om NOLyYeHama um gopma.

Notation

I
Xx=| " State-space vector
VC

y = [u, ] Output vector

I. Introduction

The boost converter is used in a wide range of
applications ranging from emulating active load in power
factor corrected power supplies to an intermediate power
conditioning circuit in hybrid electric vehicles. This wide
range of applications means a lot of design effort is
required in achieving optimal steady state and dynamic
characteristics, while accounting for different real
parameters in the power circuit.

The goal of this paper is to obtain expresions
describing the influence of nonideal circuit parameters on
steady-state and dynamic behaivior around it of the boost
converter. Achieving the goal is made through state-space
modeling of the dc-dc converter.

Replacing every component with its equivalent circuit
will result in a very complicated model, so a simplification
is made with accounting only for some the components —
the internal resistance of the source voltage, channel
resistance of the MOSFET, equivalent series resistance
(ESR) of the output capacitor and diode resistance. It must
be noted that the resistance of the connecting wires can be
lumped in with some of the above, and will not be shown
explicitly.

Experimental results show that the boost converter
cannot achieve arbitrary large boosting of the input
voltage, and in addition trying to increase the duty cycle
boosts the input voltage only to a certain point, after which
the output voltage starts rapid decreasing to zero.

The situation is described in figure 1. Increasing the
duty-cycle (d) leads to higher output voltage (Uo), which
leads to increased output current (lo), meaning also higher
current consumed from the source (Is). In a real circuit this
will lead to higher voltage drop in the resistance between
the source and the converter, resulting in lower input
voltage Ud for the power circuit. In most cases the power
circuit is part of an automatic control system, which



stabilizes some load parameters (usually the output
voltage). Then the control system increases the duty cycle
in an attempt to compensate for the lower input voltage.
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figure 1 Block diagram

However, it can happen that for a particular value of
the parameters involved increasing d, respectively Uo, lo
and Is, cannot compensate for the voltage drop. This is an
undesirable situation because in an attempt to stabilize
output voltage the controller increases the duty cycle d to
the maximum possible (d=dmax, for example. 95%).
Usually this results in nearly short circuit at the input of
the converter, and significant reduction of output voltage.
Additionally, the converter is usually designed to work in
steady state with a fixed value for the duty cycle that is
smaller than the maximum achievable. In this case if the
above described situation arises the magnetic material in
the input inductor can saturate resulting in an almost short
circuit for the source voltage. The situation persists until
the load is removed or protection circuitry activates
switching off the transistor.

The above described problems can be made concrete,
so in the Section Il expresions are obtained describing the
influence of nonideal circuit parameters on steady-state
and dynamic behaivior around it of the boost converter.
Subsequently the obtained results are plotted in Section Ill,
and in Section 1V a discussion is made about the influence
that the individual parameters can have in the steady state
and dynamic response of the converter. Finally, in Section
V some comments are made about possible ramifications
of the performed analysis.

I1. Analysis

The analysis of the boost converter shown in figure 2 is
based on the following assumptions:

1.the source voltage is Ui=const;

2.the input voltage source is real with input impedance

Ri;
3.the power MOSFET and diode are modelled with
resistance in their on state R; and R ;

4.the load impedance is modelled with R, ;

5.the output capacitor is modelled with its capacitance
C and equivalent series resistance (ESR)

R, =const ;

6.the converter is assumed to work in continuous
conduction mode (CCM).

R

11.1 General State-Space Model

The purpose of the analysis is to find a connection
between the output voltage and the duty cycle and input
voltage in order to maintain the proper mode of operation.

The first step in the analysis is to transform the
differential equation describing the behavior of the
converter in every topological state in state-space form.
Choosing the inductor current and capacitor voltage as the
state variables the first order differential equation is:

@ ¥ = Ax+Bu
dt

(2)y=Cx+Du

The step-up converter curcuit and two equivalent
ciruits for CCM — when the transistor is on and off and are
shown in figure 2.

figure 2 Equivalent Circuits

When the transistor is on the equations are:

(3)ﬂzui_iL(Ri+RT)
dt L
) duc . —Uc
dt C(R,, +R,)
uR
5)uy = ————
( ) ° RESI‘+RL

When the transistor is off using the superpositon
principle for Linear Time Inveriant(LTI) systems results in
the following differential equations for the state variables:

Cou i Ri+RD+M —ucL
dl I:zesr + I:QL I:aesr + I:QL
6)— =
dt L
7) du. iR~ U
dt C(Resr + RL) C(Resr + RL)
(8)U — iLRL Resr uC FaL
° (Resr + RL) Resr + RL

Converting (3), (4), (5), (6) (7) and (8) in state-space



form given in (1) and (2) the separate matrices are:
-When the transistor is on

—(Ri+RT) 0
@a-| - .
0 C(R+R)

-when the transistor is off:

I R.R
(R +R.)—| T
(R+Rp) (RC+RLJ .
A = L
R e
C(R.+R.) C(R.+R,)
i R, R, 0
B, = }O{—:I,CllRL_gRC RLSRC],DZ—[O}

I1.1 Approximate average model

Averaging the two topological states allows for a single
differential equation description of the power conversion
process. In this case the averaged matrices are:

(10)A,,(d) = dA +(1-d)A,
(11)B,,(d) =dB, +(1-d)B,
(12)C,,(d) = dC, +(1-d)C,

The single differential equation valid for the whole
switching cycle is :

dx
13)— = X+B_ u
()dt A, X+ B,

14)y =C,.x

This nonlinear differential equation must be linearized
around an equilibrium solution to acquire the separate
small-signal transfer functions describing the dynamic
behavior of the converter. Assuming small perturbations
around the equilibrium point allows neglecting higher
order terms in its Taylor series:

(15)W= AL (DO +d () X () + X )]+

+B, DO +dOu®)+T(0)]=
A, (D)X +B,,(D)U + Aav(d)|x=xvd=D X(t) +
+ B ()], y_p U )

L OALEX By @) g
ad |x:X,d:D

(AB)Y + §(t) = C, (D(t) + d (1) [X () + X (t)] =
0(C,.(d)x)
od

+Cu @], RO

11.2 Dc Transfer Function

C,,(D)X + d (t)

x=X,d=D

For the DC transfer function of the converter the
derivative in (13) is set to zero and the fallowing
equations are obtained:

(17)X =-A,(D)B,,(D)U

@8)Y =C(D)X

1
Substituting from (9) and putting a)(f =—
LC.
RL
Ron = RT Roff = RD + RLeq Resr

Leg =
RL + Resr ! !
the fallowing expression is obtained for the DC transfer
function:

(19) % = _CavA;\}Bav =

n

Rieq Resr (1_ D)

+ Rfeq (1-D)

- L -

RLeq 2 2_
R (R +R,,D+R4(1-D))+R.,,(1-D)

Leq
L

R (1-D)

R2
R +R,,D+R,(1-D)+

L (1-D)?
RL+Resr( )

To obtain the maximum achievable boosting of the
input voltage the derivative with respect to the duty cycle
is first obtainted:



[Riﬁ i"”[a = <1—DD>2]‘RLTLRJ

| R ;
d= R_1 +ﬁ D L R —t _(1-D)
R (L-D) R (I-D) R R +R,

Setting to zero the numerator in (20) the fallowing
expressions are obtained:

_(RI + Ronj + RL (1_ Dmax )2
(2 \R R)R+R

esr =0
(l_ Dmax )2
Ri I:zon
%
2 _ L L
(1_ Dmax) - RL
RL + Resr
Dmax =1+ \/(RI + Ror;:e)(Resr + RL)
L

The duty cycle is less than one so only the negative square
root is kept:

(22) Dmax :1_ \/(Rl + Ron)(Resr + RL)

RL
Lastly the duty cycle in (22) is substituted in the
expression for the DC Transfer function:

3%

max

(Ri + Ron)(Resr t RL)
2Ri + ROH[Z— (R| + Ron)(Resr t RL)j+|:\)(Jff

(Ri u Ron)(Resr + RL)

Assuming that the output capacitor has small equivalent
series resistance in comparison with the load resistance,
which is reasonable for most power levels, the formula for
the maximum achievable duty cycle can be approximated
with:

L L

Ri + Ron)

24)D, . =
(24)D,, =

11.3 Dynamic Transfer Functions

11.3.1 Input-to-Output Transfer Function

The next phase of the analysis is to obtain expressions for
the small signal dynamics of the converter. Separating the
small perturbations around the steady-state value a
differential equations is obtained for them:

(25) % = A, (D)F + B,, (D)7 +
+[(A1 - Az)x +(Bl - Bz)—’]a

(26)y = C,, (D)X +[(C, -C,)X d

The input-to-output and duty cycle-to-output transfer
functions are obtained by Laplace transforming the
equation with zero initial conditions, and considering only
one input at a time.

The input-to-output transfer function is:

(27) ygp; C..(D)(s! - A,, (D)) B,, (D)

Substituting the individual matrices form (9) the
following expression are obtained:

(23)(pl - A)" =

p+ RLeq Leq (1 D)
R.C L
R (1-D) , Ri+Ry,D + Roff (1-D)
_ C P L
det(pl - A,)

_ Leq Ri + RonD + Roﬁ (1_ D)
det((pl -A,))=p +|0(RC C )
) 0( Rie (R +R,,D+Ry; (1- D))+ R’ (1-D)?)

L
R
(pl-A,)"'B L e R
et(pl-A)| 2R, (1-D)

After some simplifications the final form of the transfer
function is :

29 2P _c v(pi - A,) "B, =

u(p)
esr Leq (1 D) RLeqa)O Resr (l_ D) ZRZ (1_ D)
_ L R, -
det(pl - A,,)
1 1
LR (= +——
RyRug(1-D) PH 8 Rl *g D
L det(pl - A,)

1
4+
esr Leq(l D) P CR

esr

L det(pl —A,)




11.3.2 Duty cycle-to-Output Transfer Function

The duty cycle-to-output transfer function is
obtained form :

(30) yipi lc..(D)(s1 - A, (D))*Q]+ (C, ¢, )X
p
Q=(A-A)X+(B,-B,U

The individual matrices are:

Ron_Roff RLeq
BDR=| g - -ABLYL)
_ PLeg 0
C
_ResrRLe
(C,-C )X ==y,
det(A,,))
Cav(pI _Aav)ilQ"'(Cl_CZ)X
Yin (- p2=pl,+1,)

~ det(pl - Aav)det(Aav)

_ Ry R+R,D+R,(1-D)
' RC L
R 1-D _
cr (Rt Ry +R R, (1-D))=
L 1(R+R D+R,(1-D)
CR. _{— (1- D)[— Ron + Ry + R Ry (1- D)]J -
= c; Jr%(Ri +R,,—R R, (1-D)?)

((l_ D)wg l(_ Ron + Roff + RL eq (l D)) =

L

+a)0 Leq(1 D) +

o;R .. (1-D
+%(_Ron+Roff+RL eq(l D))

esr

RLeq Ri+RonD+R0ﬁ(1—D)
R L

s Ricq [Ri+RonD -
° R | +Ry (1-D)+R 4R (1-D)?

esr

_ —-R,, + Roff 1_ DR 1 1
“|+RR,.(1-D) @ (1-D)R.s R, B

Leg

R
) 1
_(Ri + RonD + Roff (1_ D))Q)O RLeq (_ R_j
L

@ (|- Ron+Roff +R R, (1- D)](l D)) _
R., |-(R +R,D+R(1-D))
@}

= R_(_ Ron - Ri + RLRLeq (1_ D)z)

esr

Substituting and simplifying the matrices (31) in (30)
results in the following expression for the duty cycle- to
output transfer function

1 1 {R- +R,, }
CResr L Leq (1 D)

_ oy [ "Rk
Resr + RL RLeq (1_ D)2

det(pl — A, )det(A,)

111.Results

111.1 Steady-State

In the last section a general formula for steady state
behavior of the boost converter was derived. The plot of
the function is shown in figure 3. For ease of plotting the

dimensionless groups& = & = h = & are
RL RL RL RL
assumed equal.
The maximum achievable boosting of the input voltage
obtained in (23) as a function of the above mention

dimensionless groups is shown in figure 4.
111.2 Transfer functions

Using a step input and inverse Laplace transform the
unit step responses from input-to-output and duty cycle-to-
output are shown in figure 5 and figure 6 for two different
steady state points.
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figure 3 Steady State response of the boost converter
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figure 4Maximum achievable boosting of the input voltage.
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figure 5 Input-to-Output step response
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figure 6 Duty Cycle-to-Output step response




IV. Discussion

V.1 Steady-State

The plotted graph of the steady state response of the
boost converter shows that it cannot achieve arbitrary high
output voltages. The maximum achievable boosting of the
input voltage can be obtained in (23) shows that the most
contributing parasitic resistances to the observed gain fall-
off are the ones from the source and transistor. This makes
sense because high values of boosting require greater
quantities of energy to be stored in the magnetic field of
the inductor during the transistor on time, and the presence
of the source and transistor resistances impedes it.

1V.2 Transfer Functions

The forms of the input-to-output transfer function show
that it is of second order (two poles) with no zeros. This
permits the use of well-known approximated expressions
between time domain and frequency domain parameters.

On the other hand, the duty cycle-to-output transfer
function although it is of second order it has a right hand
zeros that depend on several different time constants. This
makes the overall transfer function a non-minimal phase
complicating its compensation in a closed loop system.

The non-minimal phase transfer function between the
duty cycle and output can be explained on physical
grounds in the following way: During steady state
operation of the converter if the input voltage sinks from

U, to U, (U, >U,), the control system will react rising

the duty cycle from D, to D,(D, > D,) in order to

keep the output voltage constant. But during the time the
transistor is on the output voltage is kept constant only by
the output capacitor, so in a dynamic situation raising the
duty-cycle will result in a longer on time of the transistor.
During this period the load will have more time to
discharge the output capacitor resulting in lower output
voltage.

One solution to the non-minimal phase control problem
is to use full state feedback control system instead
measuring only the output voltage and comparing it to the
reference voltage. This leads to the natural distinction
between current mode (full state feedback) and voltage
mode control.

V. Conclusion

In this paper formulas for the DC transfer function and
small signal input-to-output and duty cycle-to-output of a
boost converter operating in CCM are derived. These form
the base on which the behavior of the converter in transient
and steady state is analyzed as a function of different
parasitic resistances.

The underlying approximation allowing the small
signal transfer functions doesn’t allow their use in analysis
of the start-up transient of the converter. However, they
can be used as an initial guess of its closed loop start-up
transient with increasing the calculated overshoot.

Although the paper concerns itself only with the boost
converter operating in CCM, and only deriving two of the
five transfer functions, similar analyses can be made for
other dc-to-dc converters using the same steps, as only in
this class of power electronic converters the resulting
expressions are LTI allowing more practical analysis.
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