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In the current paper building on the sound theoretical foundation of state-space methods a model 
for the boost converter is presented. Replacing some elements in the ideal power convertor with their 

nonideal equivalent circuits results in a general vector nonlinear time-varying differential equation 

describing the circuit behavior.  Averaging the equation for one time period of the control frequency 
approximates the equation with one that is time-invariant. Solving the obtained equation for a 

particular equilibrium point results in a general expression for steady-state behavior. Subsequent 

small-signal linearization around the steady-state transforms the model to a linear time-invariant 

system (LTI). Using Laplace transform of the LTI system results in input–to-output and duty cycle-to-
output transfer functions. The results for steady-state and small-signal dynamic modelling are plotted 

and some comments are made about optimum converter behavior.   

Моделиране на процесите в транзисторен повишаващ преобразувател на постоянно 
напрежение (Владимир Димитров, Петър Горанов). В статията е разгледан обобщен 

математически анализ на повишаващ преобразувател отчитайки реални заместващи схеми 

на всеки от елементите в идеалната схема. Записаните в стандартна форма на променливи 
на състояние нелинейни диференциални уравнения, зависещи от времето, са усреднени за един 

период на управляващата честота, като апроксимацията позовлява да се разгледат 

усреднени нелинейни уравнения, описващи процесите в схемата. На тяхна база е получен израз 

за предавателната функция в установен режим на преобразувателя. Следващата стъпка е 
линеаризация около този режим, което позволява получаване на изрази за предавателни 

функции на преобразувателя съответно между изхода и смущаващо въздействие или сигнал за 

управление. Така получените резултати са показани графично, и са дискутирани някои 
следствия от получената им форма. 
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I.  Introduction 

The boost converter is used in a wide range of 

applications ranging from emulating active load in power 

factor corrected power supplies to an intermediate power 

conditioning circuit in hybrid electric vehicles. This wide 

range of applications means a lot of design effort is 

required in achieving optimal steady state and dynamic 

characteristics, while accounting for different real 

parameters in the power circuit. 

The goal of this paper is to obtain expresions 

describing the influence of nonideal circuit parameters on 
steady-state and dynamic behaivior around it of the boost 

converter. Achieving the goal is made through state-space 

modeling of the dc-dc converter. 

Replacing every component with its equivalent circuit 

will result in a very complicated model, so a simplification 

is made with accounting only for some the components – 

the internal resistance of the source voltage, channel 

resistance of the MOSFET, equivalent series resistance 

(ESR) of the output capacitor and diode resistance. It must 

be noted that the resistance of the connecting wires can be 

lumped in with some of the above, and will not be shown 
explicitly. 

Experimental results show that the boost converter 

cannot achieve arbitrary large boosting of the input 

voltage, and in addition trying to increase the duty cycle 

boosts the input voltage only to a certain point, after which 

the output voltage starts rapid decreasing to zero. 

The situation is described in figure 1. Increasing the 

duty-cycle (d) leads to higher output voltage (Uo), which 

leads to increased output current (Io), meaning also higher 

current consumed from the source (Is). In a real circuit this 

will lead to higher voltage drop in the resistance between 
the source and the converter, resulting in lower input 

voltage Ud for the power circuit. In most cases the power 

circuit is part of an automatic control system, which 



stabilizes some load parameters (usually the output 

voltage). Then the control system increases the duty cycle 

in an attempt to compensate for the lower input voltage. 
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figure 1 Block diagram 

However, it can happen that for a particular value of 

the parameters involved increasing d, respectively Uo, Io 

and Is, cannot compensate for the voltage drop. This is an 

undesirable situation because in an attempt to stabilize 

output voltage the controller increases the duty cycle d to 

the maximum possible (d=dmax, for example. 95%). 

Usually this results in nearly short circuit at the input of 

the converter, and significant reduction of output voltage. 

Additionally, the converter is usually designed to work in 

steady state with a fixed value for the duty cycle that is 

smaller than the maximum achievable. In this case if the 

above described situation arises the magnetic material in 
the input inductor can saturate resulting in an almost short 

circuit for the source voltage. The situation persists until 

the load is removed or protection circuitry activates 

switching off the transistor. 

The above described problems can be made concrete, 

so in the Section II expresions are obtained describing the 

influence of nonideal circuit parameters on steady-state 

and dynamic behaivior around it of the boost converter.  

Subsequently the obtained results are plotted in Section III, 

and in Section IV a discussion is made about the influence 

that the individual parameters can have in the steady state 
and dynamic response of the converter. Finally, in Section 

V some comments are made about possible ramifications 

of the performed analysis. 

II. Analysis 

The analysis of the boost converter shown in figure 2 is 

based on the following assumptions: 

1. the source voltage is Ui=const; 

2. the input voltage source is real with input impedance  

iR ; 

3. the power MOSFET and diode are modelled with 

resistance in their on state TR and DR  ; 

4. the load impedance is modelled with LR  ; 

5. the output capacitor is modelled with its capacitance 

C and equivalent series resistance (ESR) 

constResr   ; 

6. the converter is assumed to work in continuous 

conduction mode (CCM). 

II.1 General State-Space Model 

The purpose of the analysis is to find a connection 
between the output voltage and the duty cycle and input 

voltage in order to maintain the proper mode of operation. 

The first step in the analysis is to transform the 

differential equation describing the behavior of the 

converter in every topological state in state-space form. 

Choosing the inductor current and capacitor voltage as the 

state variables the first order differential equation is: 

BuAx
dt

dx
)1(  

DuCxy )2(  

The step-up converter curcuit and two equivalent 

ciruits for CCM – when the transistor is on and off and are 

shown in figure 2. 
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figure 2 Equivalent Circuits 

When the transistor is on the equations are: 
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When the transistor is off using the superpositon 

principle for Linear Time Inveriant(LTI) systems results in 

the following differential equations for the state variables: 
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Converting (3), (4), (5), (6)  (7) and (8) in state-space 



form given in (1) and (2) the separate matrices are: 
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-when the transistor is off: 
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II.1 Approximate average model 

Averaging the two topological states allows for a single 

differential equation description of the power conversion 

process. In this case the averaged matrices are: 

 21 )(1=)()10( AddAdAav   

21 )(1=)()11( BddBdBav 

21 )(1=)()12( CddCdCav   
The single differential equation valid for the whole 

switching cycle is : 
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This nonlinear differential equation must be linearized 

around an equilibrium solution to acquire the separate 

small-signal transfer functions describing the dynamic 

behavior of the converter. Assuming small perturbations 

around the equilibrium point allows neglecting higher 

order terms in its Taylor series: 
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II.2 Dc Transfer Function 

For the DC transfer function of the converter the 

derivative in (13) is set to zero and the fallowing 

equations are obtained: 
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function: 
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To obtain the maximum achievable boosting of the 

input voltage the derivative with respect to the duty cycle 

is first obtainted: 
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Setting to zero the numerator in (20) the fallowing 

expressions are obtained: 
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The duty cycle is less than one so only the negative square 

root is kept: 
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Lastly the duty cycle in (22) is substituted in the 

expression for the DC Transfer function: 
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Assuming that the output capacitor has small equivalent 

series resistance in comparison with the load resistance, 

which is reasonable for most power levels, the formula for 

the maximum achievable duty cycle can be approximated 

with: 
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II.3 Dynamic Transfer Functions 

II.3.1 Input-to-Output Transfer Function 

The next phase of the analysis is to obtain expressions for 

the small signal dynamics of the converter. Separating the 

small perturbations around the steady-state value a 

differential equations is obtained for them: 
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The input-to-output and duty cycle-to-output transfer 

functions are obtained by Laplace transforming the 

equation with zero initial conditions, and considering only 
one input at a time. 

The input-to-output transfer function is: 
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Substituting the individual matrices form  (9)  the 

following expression are obtained: 
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After some simplifications the final form of the transfer 

function is : 
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II.3.2 Duty cycle-to-Output Transfer Function 

 The duty cycle-to-output transfer function is 
obtained form : 
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Substituting and simplifying the matrices (31) in (30) 

results in the following expression for the duty cycle-to-

output transfer function :
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III.Results 

III.1 Steady-State  

In the last section a general formula for steady state 

behavior of the boost converter was derived. The plot of 

the function is shown in figure 3. For ease of plotting the 

dimensionless groups

L

D

L

esr

L

T

L

i

R

R

R

R

R

R

R

R
   are 

assumed equal.   

The maximum achievable boosting of the input voltage 

obtained in (23) as a function of the above mention 

dimensionless groups is shown in figure 4.  

III.2 Transfer functions 

Using a step input and inverse Laplace transform the 
unit step responses from input-to-output and duty cycle-to-

output are shown in figure 5 and figure 6 for two different 

steady state points. 
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figure 3 Steady State response of the boost converter 

 

 
figure 4Maximum achievable boosting of the input voltage. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
figure 6 Duty Cycle-to-Output step response 

 
figure 5 Input-to-Output step response 

 



IV. Discussion 

IV.1 Steady-State 

The plotted graph of the steady state response of the 

boost converter shows that it cannot achieve arbitrary high 

output voltages. The maximum achievable boosting of the 

input voltage can be obtained in (23) shows that the most 

contributing parasitic resistances to the observed gain fall-

off are the ones from the source and transistor. This makes 

sense because high values of boosting require greater 

quantities of energy to be stored in the magnetic field of 

the inductor during the transistor on time, and the presence 
of the source and transistor resistances impedes it. 

IV.2 Transfer Functions 

The forms of the input-to-output transfer function show 

that it is of second order (two poles) with no zeros. This 

permits the use of well-known approximated expressions 

between time domain and frequency domain parameters. 

On the other hand, the duty cycle-to-output transfer 

function although it is of second order it has a right hand 

zeros that depend on several different time constants. This 
makes the overall transfer function a non-minimal phase 

complicating its compensation in a closed loop system. 

The non-minimal phase transfer function between the 

duty cycle and output can be explained on physical 

grounds in the following way: During steady state 

operation of the converter if the input voltage sinks from 

1U  to )( 122 UUU  , the control system will react rising 

the duty cycle from 1D  to )( 122 DDD   in order to 

keep the output voltage constant. But during the time the 

transistor is on the output voltage is kept constant only by 
the output capacitor, so in a dynamic situation raising the 

duty-cycle will result in a longer on time of the transistor. 

During this period the load will have more time to 

discharge the output capacitor resulting in lower output 

voltage. 

One solution to the non-minimal phase control problem 

is to use full state feedback control system instead 

measuring only the output voltage and comparing it to the 

reference voltage. This leads to the natural distinction 

between current mode (full state feedback) and voltage 

mode control. 

V. Conclusion 

In this paper formulas for the DC transfer function and 

small signal input-to-output and duty cycle-to-output of a 
boost converter operating in CCM are derived. These form 

the base on which the behavior of the converter in transient 

and steady state is analyzed as a function of different 

parasitic resistances.  

The underlying approximation allowing the small 

signal transfer functions doesn’t allow their use in analysis 

of the start-up transient of the converter. However, they 

can be used as an initial guess of its closed loop start-up 

transient with increasing the calculated overshoot. 

Although the paper concerns itself only with the boost 

converter operating in CCM, and only deriving two of the 

five transfer functions, similar analyses can be made for 

other dc-to-dc converters using the same steps, as only in 
this class of power electronic converters the resulting 

expressions are LTI allowing more practical analysis. 
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