
Manipulation of virtual objects through a LeapMotion optical

sensor

Stoyan Kerefeyn1, Stoyan Maleshkov2

1 Virtual Reality Laboratory, Technical University Sofia, Sofia 1797, Bulgaria

2 Virtual Reality Laboratory, Technical University Sofia, Sofia 1797, Bulgaria

Abstract
The purpose of this paper is to present a gesture-based approach

for controlling and manipulating remotely virtual objects in a

virtual reality environment through a LeapMotion optical sensor.

The interaction is performed by a separate software module,

which is installed on the same system, where the virtual reality

application is put into operation. The software architecture,

implementation and user experience details are discussed and

evaluated. In comparison to similar techniques our solution has

the advantage to be intuitive, to provide means for creation of

user interfaces without physical contact to the sensor, having

minimal delay while performing the control actions.

Keywords: LeapMotion, Gesture Recognition, Virtual Reality,

Multimodal Presentation, Engineering Analysis Results

Validation.

1. Introduction

Virtual Reality (VR) and Augmented Reality (AR) are

rapidly becoming powerful tools for design and

development of new products, providing almost unlimited

opportunities for improvements and minimizing time to

market. They also provide an environment to simulate

dangerous tasks, study hazardous materials or reactions

without any risk to the involved individuals. Recognizing

the benefits a virtual reality system can offer, some

potential obstacles remain, which have to be resolved –

mainly the manner the interaction with the system is

designed and implemented. Traditional WIMP methods

can be applied, which use windows, mouse, icons and

pointers, but they are not always intuitive or responsive

enough for the freedom a VR system provides. Other

solutions like optical or magnetic trackers can be

expensive [1]. With the advancement of technology in the

last years even more affordable sensors are entering the

market, which can be used with great success as interaction

devices in VR systems. The solution for manipulation of

virtual objects described in this paper relies on and utilizes

such device – the LeapMotion sensor. LeapMotion [2] is a

small hardware component, which can be connected via

USB to a desktop computer running Windows or MacOS

X operating system. It uses two monochrome infrared

cameras and three infrared LEDs to track an approximated

cone-shaped area with height of approximately 1 meter

above the sensor. The LEDs generate a 3D model of

infrared light dots and the cameras generate almost 300

frames per second of the reflected data, which are sent via

the USB cable to the computer. Subsequently these data

are analyzed with a specialized algorithm [3] that gives the

developer exact and anatomically correct data for the

position and movement of hands, wrists and fingers above

the sensor, providing the opportunity for creation of a non-

physical gesture-oriented input interface. The LeapMotion

device has been selected for our study based on the results

described in [4], where the LeapMotion has proved to

provide better interaction functionality in comparison to

the traditional mouse concerning single-target three-

dimensional selection and manipulation tasks. In [5] the

authors evaluated this controller as possible replacement of

traditional interface devices for fast high-precision optical

motion capture system operating in limited space and with

limited number of objects. The method allows performing

successfully complex tasks in 3D without constraints to the

operator. In [6] the authors have developed a human-

machine communication interface linking the Leap Motion

controller to robotic arm, which principles can be also

utilized for manipulation of objects in virtual reality

environments.

2. The gesture-based approach

When we developed the concept of the approach described

in this paper we structured the functionality and

architecture following a top-down design principle. It was

decided that the designed software solution will not expose

an explicit visual user interface but will fulfill the function

of a driver that connects the hardware sensor with a

specialized application for manipulation and data sampling

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 52

2015 International Journal of Computer Science Issues

of 3D engineering models in virtual reality environments.

This allows the module to be applied as “stand-alone”

input interface device in other similar VR applications with

identical functionality and shortcuts. At future

development stage it will be enhanced with additional

specific features and will be integrated as part of a low cost

VR system used for presentation of engineering analysis

results.

2.1 Functionality through gestures

A main phase in the proposed approach is the functionality

mapping between the VR application interaction features

and hand gestures. The created input interface allows five

types of interaction commands with objects in the virtual

scene, defined as follows:

Fig. 1. Gestures defined for interaction with the specialized virtual reality

software.

 Positioning the cursor at point in the scene;

 Geometric object translation following the cursor;

 Geometric object rotation around selected base

point (the already positioned cursor point);

 Geometric object resizing about selected base

point (the already positioned cursor point);

 Sampling (registering) a point of the geometric

object – selection of the geometric object and

returning the coordinates of the sampled point.

Each one of these interaction commands is typically

performed using a combination of keyboard input, mouse

movement and buttons pressing. These combinations can

be attached to intuitive gestures defined by movements of

the hands and fingers as described on Fig. 1

2.2 Sensor communication

The designer of the LeapMotion sensor have provided a

well documented application programming interface (API)

[7] that helps developers interact with the device. We have

utilized and incorporated various programming objects and

methods from this API in our business logic. The flowchart

of the business logic is presented on Fig. 2.

Fig. 2. Application business logic flowchart.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 53

2015 International Journal of Computer Science Issues

When the tracking module is started, a

com.leapmotion.leap.Controller object is initiated as

shown on Code 1. This programming object controls the

initial starting parameters of the sensor and the sensor

itself. The tracking module launches the sensor in

background mode – this allows our application to receive

and analyze sensor data even if it’s not the active

foreground application. An event listener is added, which

includes the gesture recognition logic. The application

enters an endless loop for recognition and execution until

the keyboard Enter button is pressed. This action

terminates the execution of the module and the listener is

released. This basic approach is valid for all applications

that use the LeapMotion sensor and can be reused.

Code 1. Standard sensor initialization

The LeapTrackingManager event listener implements

the abstract interface com.leapmotion.leap.Listener,

which notifies the business logic for sensor events. When

the listener is created another object

RemoteEventsListenerImpl is initiated, which

implements the interface RemoteEventsListener

described in Code 2. The implementation of this interface

translates the recognized gestures in computer commands.

Code 2. Functionality interface

The LeapTrackingManager event listener is registered to

the LeapMotion controller, which is provided by the

LeapMotion creators and pre-installed on the computer.

This controller monitors the hardware connection to the

device and notifies the event listener for changes in the

connection state.

2.3 Gesture recognition

When a sensor is connected to the computer the

LeapTrackingManager is notified from the

com.leapmotion.leap.Controller and a software

connection to the hardware device is established. The API

gives us the opportunity to register for potential more

complex gestures like finger rotation and finger push. In

this case the gesture recognition for such pre-defined

gestures is left to the API. Through the implementation of

the com.leapmotion.leap.Listener the onFrame() callback

is called continuously. This method (Code 3.) gives access

to the current frame captured by the device.

Code 3. onFrame() method

Hand movement and finger gestures are gathered from the

frame-callback provided by the controller. The frame

includes all needed information like hand and finger count

and position, as well as information for eventually

recognized gestures, that we are listening to. If both hands

are detected in the infrared cone of the LeapMotion sensor,

only the movement of the right hand will be tracked. At

this stage of the development a limited array of gestures

and functions are implemented, which can be easily

represented with one-hand movements. The sensor offers

tracking of both hands and in the future a setting for left-

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 54

2015 International Journal of Computer Science Issues

handed users or more complex gestures involving both

hands can be added. Every frame is processed with

different algorithms based on the extended finger count as

follows:

 If the fingers are more than three all candidates

for rotation or translation gesture are neglected

and the hand movement is interpreted as pure

mouse cursor movement. The movement of the

hand in the 3D space is translated to a 2D cursor

movement, which is translated as command to the

computer;

 If the extended fingers are exactly three we

recognize intent of the user to perform geometric

object rotation. The shortcut combination, that

matches the command for rotation of the

specialized virtual reality software is simulated

and the further hand movement is processed to

determine the direction of the rotation;

 If the extended fingers are exactly two we

recognize intent for geometric object translation.

The shortcut combination for translation is

simulated and the hand movement is processed to

determine the direction of the translation;

 If only one finger is extended we recognize intent

for a specific finger gesture – either finger

rotation or finger push. A specialized method

calculateGesture() that deals with this event is

called. This method describes an algorithm for

interpretation of the recognized gesture as shown

in Code 4.

Code 4. calculateGesture() method

Each LeapMotion frame offers a list of potentially

recognized gestures. This list is cycled and if a valid,

defined gesture is found it is linked to a matching

command. If a finger rotation event is captured the

movement direction of the finger is calculated – it is

determined if the rotation is in clockwise or anti-clockwise

direction. The recognized direction is matched to the user’s

intent to perform zoom-in or zoom-out operation. The

actual zoom in/out command is executed with a pre-

defined step – one finger rotation always zooms in or out

applying one and the same angle of rotation. The push with

a finger towards the screen is interpreted as sampling

(registering) a point of the geometric object, what is

equivalent to the command to perform a single left mouse

button click at the current cursor position returning the

corresponding 2D coordinates.

2.4 Translating commands to the computer

After a gesture is being recognized the command mapped

to this gesture needs to be executed on the computer. With

a standard input interface each command is represented as

a combination of left and right mouse button clicks

combined with mouse movement and keyboard button

presses. These exact button combinations are mapped to

the gestures and are virtually executed on the computer

through the simulation interface LeapTrackingManager.

The implementation of this interface uses the standard java

class java.awt.Robot [8] for mouse and keyboard

command simulation. The 3D hand movement is translated

to 2D mouse movement using the following algorithm:

 Two sensor frames containing hand data are

needed for processing – the current frame and the

last frame – this is previous frame before the

current frame;

 A 3D Vector is built by averaging the positions of

all fingertips of both frames. This gives more

precise coordinates than simple hand position;

 The X and Y coordinates of the vector of are

separated and used in further calculations;

 To calculate the movement of the hand the

position of the hand on the last frame is

subtracted from the position of the hand on the

current frame. This is performed by each of the X

and Y axis separately;

 Jitter and faulty sensor data are taken into

consideration and minor irregular movements,

smaller than some predefined amount are

discarded;

 The calculated hand movement is multiplied with

an acceleration factor which is determined by

taking into account the monitor’s size and aspect

ratio (for the regular case X factor is greater than

those of Y);

 The resulted X and Y movement is passed to the

java.awt.Robot mouseMove() method;

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 55

2015 International Journal of Computer Science Issues

 The current frame hand data is set as last frame

hand data and the calculations are repeated in

loop from the beginning.

The processing of the sensor data described above is

terminated when the sensor is physically disconnected or

the Enter keyboard button is pressed and the software

connection to the controller is deactivated.

3. Experimental study

As a test case we have extended the functionality of our

affordable VR system, developed in the framework of a

previous project [9] and used to present and evaluate

engineering analysis results [10] with LeapMotion sensor

implementing the described approach. The specialized

application for manipulation and data sampling of a 3D

model of an engineering object in a virtual reality system,

as well as our LeapMotion module have been pre-installed

on the system and an engineering model – in this case of a

boiler – has been loaded. The interaction with this object

was performed using on two different VR system setups:

with standard LCD monitor (2D) and with 3D monitor.

Although the two VR systems delivered different level of

immersion, the LeapMotion module provided in both cases

an intuitive input alternative to the mouse and keyboard

input. As interaction task the user was requested to select

the object (Fig. 3) and to translate it to a new position in

the scene (Fig. 4). After that he/she had to rotate the model

and to sample a specific point from the surface of the

model. The sampling operation executed an audio

feedback signal produced through the audio system of the

computer. This feedback delivers additional information to

the user about the displacement at the specific object point.

We have carried out a usability test, which has indicated

clearly that the presented approach allows easy and

intuitive navigation in the VR system. The application can

be successfully used in cases where physical access to I/O

interfaces is not possible. Consider as an example the

following scenario: the user is manipulating a real physical

object (e.g. performing welding operation) and is

enhancing his/her work experience with the simultaneous

usage of the specialized VR application. The application is

visualizing the same physical object in a VR environment

but is also providing additional information about it, thus

engaging the user in an AR environment. The additional

information can present thermal data collected in real-time

by additional sensors and superimposed to the image. Due

to safety regulation the user has to wear protection gloves.

In this situation the usage of traditional I/O interface

devices will hinder or even make the operation impossible

and simultaneous work with both the physical object and

the virtual reality presentation could not be done. The

LeapMotion sensor overcomes these difficulties – even

with gloves the gestures and hand movements remain the

same and that allows convenient manipulation of the

objects in the scene. Just by pointing at a point on the

virtual object the user receives visual and audible feedback

providing additional information about the real physical

object features.

Fig. 3. Selection of a 3D object in an affordable virtual reality system.

Fig. 4. Translation of the selected 3D object.

4. Conclusions

Our solution, which connects the LeapMotion sensor with

the specialized virtual reality software, replaces a set of

functions that are normally implemented with traditional

input devices – mouse and keyboard using natural hand

movements and gestures. This allows the communication

with the application to be continued even in cases where

physical contact with I/O interface devices is not possible

providing means for seamless VR and AR experience.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 56

2015 International Journal of Computer Science Issues

Acknowledgments

The results presented in this paper are obtained in the

framework of research activities funded by the Internal

research grant of the Technical University of Sofia – 2015

and partly supported by LaSciSo (Large Scale Industrial

Structural Optimization) project, funded under the FP7

PEOPLE Work Programme, Action IAPP (Grant 285782).

References
 [1] D. Chotrov, S. Maleshkov, A. Bachvarov, “ Interaction in

virtual reality systems through gestures“ (in German:

“Interaktion in Systemen der virtuellen Realität durch

Gesten”), Wissenschaftliche Konferenz Technik und

Wirtschaft in der globalen Krise, ISSN 1310-3946, 26-27

November 2009, Technische Universität – Sofia, pp. 113-

120.

[2] Official LeapMotion website https://www.leapmotion.com/

[3] F. Weichert, D. Bachmann , B. Rudak, D. Fisseler, “Analysis

of the Accuracy and Robustness of the Leap Motion

Controller”, Sensors 2013, 13(5), 6380-6393;

doi:10.3390/s130506380 http://www.mdpi.com/1424-

8220/13/5/6380/htm

[4] J. C. Coelho, F. J. Verbeek, “Pointing Task Evaluation of

Leap Motion Controller in 3D Virtual Environment”, Chi

Sparks 2014 Conference, ISBN: 978-90-73077-55-3

http://chi-sparks.nl/2014/wp-

content/uploads/2014/Chi%20Sparks%202014%20proceedin

gs-web.pdf#page=78

[5] J. Guna, G. Jakus , M. Pogačnik , S. Tomažič, J. Sodnik, “An

Analysis of the Precision and Reliability of the Leap Motion

Sensor and Its Suitability for Static and Dynamic Tracking,

Sensors” 2014, 14(2), 3702-3720; doi:10.3390/s140203702

http://www.mdpi.com/1424-8220/14/2/3702/htm#b8-

sensors-14-03702

[6] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, T. Bock

“Intuitive and Adaptive Robotic Arm Manipulation using the

Leap Motion Controller”, Conference: the 45th International

Symposium on Robotics (ISR 2014) and the 8th German

Conference on Robotics (ROBOTIK 2014), 978-3-8007-

3601-0

[7] Official LeapMotion development website

https://developer.leapmotion.com/

[8] Sun, Oracle Java Robot API

http://docs.oracle.com/javase/7/docs/api/java/awt/Robot.html

[9] S. Maleshkov, D. Chotrov, “Affordable Virtual Reality

System Architecture for Representation of Implicit Object

Properties”, IJCSI International Journal of Computer Science

Issues, Vol. 9, Issue 4, No 2, July 2012, pp. 23-29.

[10]S. Maleshkov, D. Chotrov, “Post-processing of Engineering

Analysis Results for Visualization in VR System”,

International Journal of Computer Science Issues, ISSN

1694-0784 Vol. 10, Issue 2, No 2, March 2013, pp. 258-263.

Stoyan Kerefeyn has received BSc. (2010) and MSc. (2012)
degrees in computer systems and technologies from the
Technical University of Sofia, Bulgaria. Currently he is PhD
student, acting at the Virtual reality lab.

Stoyan Maleshkov has Eng. degree in system and control
engineering (1975), master in applied mathematics (1977) and
PhD in computer aided system design (1981), all received from
the Technical University (TU) of Sofia, Bulgaria. Fulbright scholar
(1989–1990) at the Interactive Modeling Research Lab, Louisiana
State University, Baton Rouge, USA. Professor of computer aided
engineering and computer graphics at the TU of Sofia.
Department chair (2000-2004) and vice dean (2004-2008), both at
the TU Sofia. Since 2008: Head of the Virtual reality lab, TU Sofia.
Professor of computer graphics at the New Bulgarian University,
Sofia, as a second job. IEEE member.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 57

2015 International Journal of Computer Science Issues

http://dx.doi.org/10.3390/s140203702
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bassily,%20D..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Georgoulas,%20C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guettler,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Linner,%20T..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bock,%20T..QT.&newsearch=true

