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Abstract

This paper describes new method for the synthesis of four-bar 
linkages for generating a required input-to-output motion. The 
synthesis method is based on the direct application of Chebyshev’s 
Alternation Theorem for the Equation of Freudenstein. By this 
approach the maximum structural error which corresponds 
to the best approximation can be estimated in advance. Two 
comparative examples are herewith used to illustrate some of 
the main features of the method. The innovation in this paper 
is the presentation of the target function as exact satisfied 
equation. On substituting the solution of this equation in the 
Equation of Freudenstein a generalized polynomial of Chebyshev 
is obtained. This polynomial is minimized by the Chebyshev’s 
alternation theorem. This method does not require Chebyshev’s 
spacing of the structural error of the mechanisms. One of the 
advantages of the so proposed approach is the possibility to 
predict the peculiarities of the mechanism with respect to 
the synthesis problem in the beginning of the solution. The so 
proposed method combines the power of the Freudenstein’s 
equation and the Chebyshev’s theorem comprehensiveness. 
The method of Freudenstein-Chebyshev presented here shows 
that for every structural error which could be presented as 
generalized polynomial of Chebyshev can be found the best 
approximation.

Keywords: Mechanism Synthesis; Function Generator; Best 
Approximation, Singular Configuration; Freudenstein Equation; 
Chebyshev’s Theorem.

Introduction

The first numerical problem of mechanism synthesis was solved 
by the eminent mathematician P. L. Chebyshev. In 1854 he solved 
the problem with the dimensions of the four-bar mechanism 
with a coupler path, which is best approximated to a straight 
line for a specified interval of the input link items [1]. By solving 
this problem, he stated the so-called Chebyshev’s Fundamental 
Theorem, which is also known as the Chebyshev’s Alternation 
Theorem. This theorem is a powerful tool for solving different 
types of approximation problems, and not only in the field of the 
theory of mechanisms.

Different approaches have been used to solve synthesis related 
tasks. Graphical methods allow obtaining the most meaningful 
concept for the various types of mechanism syntheses, which 
describe the nature of the problems with synthesis in general [2]. 
The accuracy of these methods was not satisfactory enough for 
some engineering problems. These shortcomings were overcome 
by producing graphic designs of analytical expressions, which 
are compatible with computer calculations. Nowadays the use of 
CAD software provides opportunities for improving the accuracy 
of graphic methods to the level of the analytical ones.

Freudenstein’s equation [3] can be considered as the simplest 
position function expression of the four-bar mechanisms. This 
simplification is the basis of its widespread application for finding 
solutions to different kinds of problems in the mechanism 
synthesis.

Contemporary methods of synthesis are based on recent 
developments in mathematics, using finite element analysis, 
neural networks, fussy sets, genetic and evolution algorithms. 
Penunuri et al indicated the application of the evolution 
method in solving a wide range of synthesis problems [4]. 
Evolution algorithms and simplex techniques are at the core of 
the modules for the optimization of the package for interactive 
PC-software for synthesis and analysis of mechanisms (SAM) 
which is a powerful tool for design and optimization of arbitrary 
planar mechanisms [5]. Regarding the four-bar mechanism, 
Shpli uses the genetic algorithm to solve a function generator 
problem [6]. The simplicity and feasibility of the evolution and 
genetic algorithms used for solving a wide range of problems is 
described in publications [7-9]. Angeles F. et al present synthesis 
approaches which do not involve genetic algorithms and which 
yield satisfactory results [10].

It is well known that the structural error of the function generation 
mechanisms can be minimized by applying Chebyshev’s 
fundamental theorem. This theorem can be directed towards 
mechanisms, as follows: If n independent adjustable parameters 
are involved in the design of a mechanism, which will generate a 
prescribed path or function, then the largest absolute value of the 
structural error will be minimized where there are n precision 



points, so positioned that the ( )1n −  maximum values of the 
structural error between each pair of adjacent precision points, 
as well as between the ends and the nearest precision points xi  
are numerically equal with successive alterations in sign [11].

Chebyshev noted that the best linkage approximation of a given 
mechanism to any function occurs when the absolute value of 
the maximum structural error between the precision points 
and both ends of the range are equalized. Chebyshev’s spacing 
of precision points is employed to minimize the structural error 
[12]. The Freudenstein equation technique, used for dimensional 
synthesis, can also be relied upon to secure the minimized 
structural error [13].

One possible method for solving complex synthesis is presented 
by the author of this paper in [14]. The presented method in this 
paper leads to a relative complex conversion of the structural 
error into equation the Equation of Freudenstein. 

The purpose of this paper is to show a new method that can be 
useful for the approximation of simple functions by combining 
Chebyshev’s Fundamental Theorem and Freudenstein’s 
Equation. This method does not require Chebyshev’s precision 
point spacing in the beginning of the solution. Furthermore, 
the method provides for a problem to be analyzed for the best 
approximation, and also for the opportunity to establish the 
existence of such approximation as a whole.

Theory Background 

Let us consider a generalized polynomial of the thn )1( +  order

( ) ( ) ( )xfpxfpxfpxP nn+++= ...)( 1100          (1)

of linearly independent continuous functions ( )xfi  , where

nppp ...,,, 10 are constant coefficients. The expression 
(1) is called polynomial of Chebyshev’s systems functions 

when each polynomial of the functions ( )xfi has no more 

than n  roots in the interval ],[ ba  [15]. The set of functions 

( ) ( )nixfi ...,,1,0, =  is called Chebyshev’s system functions 
of the order n .

The condition for the existence of the functions of Chebyshev 
system is equivalent to the condition
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for every different 1+n  point, where ],[ baxi ∈ .

A continuous function ( )xF  is the one least deviating from 
Chebyshev’s system polynomial of the order n  of the type (1) 

if ( ) ( )xFxP
ba

−=∆
],[max max  is minimum. Such kind of function 

approximation is also called the Best Approximation or 
Chebyshev’s Approximation.

Chebyshev’s Alternation Theorem is formulated as follows:

In order for polynomial (1) to deviate as small as possible from a 
given continuous function ( )xF  within the interval ],[ ba , it is 
necessary and sufficient that the difference 

( ) ( ) ( )xFxPx −=∆  (3)

reaches consecutively its extreme values L±  with alternating 

characters at least ( )2+n  times.

For the four-bar mechanism shown in Figure 1, Freudenstein’s 
equation [16] (F. Freudenstein, 1954) can be written in the view

( ) 0coscoscos 321 =−−−+ ϕψψϕ ppp            (4)

where 

lRrdp
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and 

r
dp =3             (7)

are constant coefficients, which depend on the dimensions of the 

links ,r  ,R l  and d  as shown in Figure 1.
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In the function generation synthesis problems, the output angle 
has to be approximated to a required function ( )ϕFF =  of the
input angleϕ . Most approximate methods lead to the creation of 
a target function

( ) ( )ϕϕψ F−=∆             (8)

and to the search of its minimum within a limited interval for 

J Robot Mech Eng Resr 1(1). Page | 2

Citation: Todor Stoilov Todorov (2015) Synthesis of Four Bar Mechanisms as Function Generators by Freudenstein - Chebyshev. J Robot Mech Eng 
Resr 1(1).

Figure 1: Kinematic scheme of four-bar mechanism.



[ ]mϕϕϕ ,1∈ , where 1+≤ nm . The function (8) is also called 
a structural error.

The so called here method of Freudenstein-Chebyshev can be 
described by the following steps: 

Let us assume that the target function has been completely 
satisfied, e.g. 

( ) ( ) 0=−=∆ ϕϕψ F (9)

An explicit solution of (9) can be found for a very wide class of 
optimization functions with respect to the output variable

( )ϕψ ∆Φ=  (10)

By substituting formula (10) in Freudenstein’s equation (4) it is 
found

( ) ( )[ ] 0coscoscos 321 =−Φ−Φ−+ ∆∆ ϕϕϕϕ ppp   (11)

The left hand side of Equation (11) can be presented as

( ) ( ) ( )ϕϕϕ ψψ FP −=∆ (12)

where

( ) ( )ϕϕϕ ∆Φ−+= coscos 321 pppP  (13)

( ) ( )[ ]ϕϕϕψ −Φ= ∆cosF  (14)

If the set of the functions ( )}cos,cos,1{ ϕϕ ∆Φ−  forms
Chebyshev’s 3rd order system in the prescribed approximation 
interval of 

41 ϕϕϕ ≤≤ , then Chebyshev’s Theorem can be 
applied in order for the unknown coefficients ,1p 2p  and 3p
to be found. After applying the theorem to the difference 
(12), the following system of equations pursues:

( ) ( )
( )





==∆′
=−=∆

3,20
4,3,2,11

j
iL

j

i
i

ϕ
ϕ

ψ

ψ (15)

where ( ) ( )
j

j d
d

ϕϕϕ
ϕ

ϕ ψ
ψ =

∆
=∆′

The determination of the coefficients ,1p  2p  and 3p  allows
the three dimensions of the four-bar mechanism to be calculated 
as a function of the fourth one. 

System (15) consists of six equations. The number of unknowns 
,1p  ,2p  ,3p  ,2ϕ

 ,3ϕ
and L  is six, which means that the

system is determinate. Here it is assumed that the ends of the 
approximation interval 1ϕ  and 4ϕ  are known beforehand. It is

possible for the synthesis task to become more complicated if 
the end angles 1ϕ  and 4ϕ  are assumed as unknowns and the
optimization function at these points, also has extreme values. 
This leads to the system 

( ) ( )
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In this case the new two unknowns 1ϕ  and 4ϕ  can be considered 
as extreme points of the range of approximation. 

The so described synthesis method can be expanded by the 
introduction of the initial input and output angles. With the help 
of these two new constants, it is possible to find similar solutions 
of synthesis problems for precision points 4 and 5.

The classical synthesis method of Freudenstein is based on the 
spacing of Chebyshev’s precision points, which are the roots of 
Chebyshev’s power polynomials [17]. According to this meth-
od, the best solution of the function generation problem can be 
found when assuming that the structural error at the precision 
points is zero. 

This requires the solution of a system of Freudenstein equations 

where the pair of the known parameters ( )
ii 00 ,ψϕ  has been 

calculated with the help of the function ( )
i

Fi 00 ϕψ = . This 
method of synthesis problem involves a linear system of three 
equations 

( )1 2 0 3 0 0 0cos cos cos 0i i i ip p pφ ψ ψ φ+ − − − =    3,2,1=i    (17)

This method allows for a maximum of 5 precision points to be 
used if the initial input and output angles are assumed as un-
known. In this case, system (17) becomes nonlinear.

Numerical Examples

Suppose a four-bar mechanism has to generate the simple function 

ϕ
5
1

=F                               (18)

for the interval of the input angle of [ ] 280,220∈ϕ . It follows
from formula (9) that the structural error has the following form:

( ) ϕϕψ
5
1

−=∆ (19)

According to assumption (9), it is found that

( ) ϕϕ
5
1

=Φ∆           (20)

Polynomial (13) and function (14) can be rewritten in the form

( ) ,5
coscos 321

ϕϕϕ pppP −+= and     ( )
5

4cos ϕϕψ =F   (21)

Difference (12) is now an even function, which is

J Robot Mech Eng Resr 1(1). Page | 3

Citation: Todor Stoilov Todorov (2015) Synthesis of Four Bar Mechanisms as Function Generators by Freudenstein - Chebyshev. J Robot Mech Eng 
Resr 1(1).
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5
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coscos 321
ϕϕϕϕψ −−+=∆ ppp          (22)

The set of functions },
5

cos,cos,1{ ϕϕ −  forms Chebyshev’s

system for 200 280ϕ≤ ≤   and Chebyshev’s theorem can be 
applied for diminishing the structure error. 

According to the case considered in the system of equations (15), 
it follows that:
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where 2001 =ϕ  and 2804 =ϕ . This system leads to the 
following numerical solution: 

=1p  -5.838535436, =2p -1.757488964, =3p  8.57533417, 

=,2ϕ  3.852698185, =3ϕ  4.545660767 and =L  0.01874486286. 
Assuming that 1=R , the lengths of the rest of the links are cal-
culated as follows: =d -1.757488964, =l 1.318176828, and 
=r -0.2049469944. 

The same problem is solved by the classical method of 
Freudenstein. The spacing of precision points is calculated by the 
formula

( )
n

i
i 2

12cos
22

1414
0

πϕϕϕϕϕ −−
+

+
=      3,2,1=i         (24)

The above-described system (18) is obtained and its solution 

=1p  -5.838535436, =2p -1.757488964, =3p  8.57533417 has 
been found.

The four-bar configurations for the end input angular positions are 
shown in Figure 2. The error distribution of both methods is shown 
in Figure 3. The dashed line shows the solution by the method of 
Freudenstein-Chebyshev and the solid line describes the classical 
solution obtained by Chebyshev’s precision points spacing. 

ϕ01 ϕ02 ϕ03 ϕ 

  ∆ 

The results shows that the method of Freudenstein-Chebyshev’s 
is more precise than the classical method of Freudenstein, and the 
real precision points do not coincide with these ones determined 
by the Chebyshev’s spacing.

The next example considers the approximation of the same target 

function (18) ϕ
5
1

=F , only that it is for the interval between 

0 90φ≤ ≤  .

The solution of system (23), which presents the method of 
Freudenstein - Chebyshev for this interval, gives the parameter 
values =1p  -4.99081, =2p -0.41842, =3p  5.5724, =,2ϕ
0.77809, =3ϕ  1.3560 and =L  0.00008842. The distribution of
Chebyshev’s polynomial for these parameters is shown in Figure 
4. It is evident that this polynomial has Chebyshev’s form, but
the real distribution of the structural error shown in Figure 4 
does not satisfied Chebyshev’s Alternation Theorem. The reason 
for this result is that the difference (12) is some type of weighted 
target function (14).

 φ01  φ02  φ03 

Δψ 

φ 
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Figure 3: Comparison of the error distributions of the two synthesis 
methods. The dashed line is the Freudenstein-Chebyshev’s 
distribution and the solid line is the Freudenstein’s precision point 
spacing method. The precision points are φ01, φ02, and φ03.

Figure 4: The polynomial of Chebyshev for 0 ≤φ ≤90º. The 
precision points φ01, φ02 and φ03 do not coincide with the 
roots of the polynomial.
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Figure 2: Two end configurations of the synthesized four-bar 
mechanism.



The graph in the Figure 5 shows that in the interval between 

0 ≤ ϕ ≤ 0.75 radians there is a 100 times bigger error and the 
precision points for the two graphs shown in Figure 5 and 6 do 
not coincide. 

The same task, solved by the classical method of precision points 
spacing method, gives the graphical results shown in Figure 6. 
A configuration of the four-bar mechanism for the considered 
range of approximation is shown in Figure 7.

In such case, even though the graph of error distribution passes 
through Chebyshev’s precision points, the polynomial does 
coincide with that of Chebyshev. The relative error is small but 
this is not the best solution in the Chebyshev sense. What are the 
reasons for this situation? As mentioned above, expression (11) 
is an even function whereby polynomial (12) is symmetrically 
distributed with respect to the ordinate. The symmetry imposes 
6 precision points in the extended interval -90°≤φ<90°. This 
means that the precision points have to be calculated according 
to these 6 points within an extended interval, and not in the same 
way as it was done for the 3 ones. 
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The next reason that concerns the non-linear transformation 
of the Freudenstein-Chebyshev method results from the quasi-
singular configuration of the mechanism for φ=0. It follows from 
formula (11) and the symmetry, that the one of maximum errors 
has to be in the centre of the interval -90°≤φ<90°. Because of the 
very small relative error for this position, the mechanism is very 
close to its singular configuration, which is determined by

lRrd ≈+− (25)

The approximate view of this quasi-singular configuration is 
shown in figure 8. Because the target function at 0=ϕ  has an 
extreme, it follows that ( ) L== maxψϕψ . If the assumption is 
made that =R 1, then the ordinate of point B is LRyB sin=
or LyB ≈ . As the maximum value of the structural error is 
relatively small it could be assumed that point B is very close to 
the x  abscise and from the engineering point of view all links 
almost lie on the x0  axe. In the ideal singular configuration, 
all links form a straight line. Because of the presence of a slight 
deviation By , this configuration is referred to as quasi-singular.

In the singular configuration, the velocity ratio of the mechanism 
is not determined and the prescribed synthesis condition cannot 
be satisfied.

Conclusion

The Freudenstein-Chebyshev method provides a better solution 
compared to the classical method of spacing of precision points, 
but for technical applications the difference between the two 
errors is negligible.

By the Freudenstein-Chebyshev method, the maximum error 
and the precision points can be estimated during the synthesis 
process. There is no need of precision point spacing.

Applying the method of Freudenstein - Chebyshev can avoid 
some peculiarities of synthesis in some special cases, such as in 
singular configuration, even or odd functions of the structural 
error.

As it was shown here, using the precise point spacing method 
may give unexpected results in some specific cases. By the 
method of Freudenstein-Chebyshev it is seen that the precise 
point spacing method fails in cases when the structural error in 
not a Chebyshev’s polynomial.

The method can be extended to solve even problems, which 
involve four and five precision points involving the initial angles 
of the crank and rocker.
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Figure 5: The structural error distribution according to 
Freudenstein-Chebyshev’s method.

Figure 6: The distribution of the structural error, which corre-
sponds to the Freudenstein’s method of precision point spacing.

Figure 7: The so-called quasi-singular configuration of four-bar 
mechanism (the lengths of the links are not scaled). The link CB here 
almost coincide with axis x because of the very small value of yB.
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The approach described here can also be applied to other types 
of mechanisms and synthesis problems. There are almost no 
restrictions with respect to the type of the target functions as 
well.
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