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ABSTRACT

This paper is devoted to various issues related to the design

and practical implementation of high order robust control

laws. We consider derivation of plant uncertainty models us-

ing analytical or identification procedures, implementation of

different schemes for µ-synthesis, choice of weighting filters

and controller order reduction. Additional important problems

arising in the framework of embedded control systems, like

removing the sensor drifts, generation of control code from

Simulink
R©and effect of single precision arithmetic on the

controller stability, are discussed in some details. As a case

study we present the robust control of two-wheeled robot using

µ-controller of order 30. The experimental results confirm

that the closed-loop system achieves both robust stability and

robust performance in respect to the uncertainties related to

the identification of robot model.

INTRODUCTION

The Robust Control Theory involves powerful methods for

analysis and design of control systems in presence of signal

and parameter uncertainties (Sánchez-Peña and Sznaier 1998;

Skogestad and Postlethwaite 2005; Zhou et al. 1996). The most

frequently used techniques for robust control design are the

H∞ design and the µ–synthesis (Skogestad and Postlethwaite

2005). The H∞ optimization is usually preferred in robust

design because it produces controllers of smaller order which

facilitates their implementation. The common disadvantage of

all H∞ design methods is that they are suitable for plants with

unstructured uncertainties but can not ensure robust stability

and robust performance in the general case of unstructured

and structured (parametric) uncertainties. In contrast, the µ–

synthesis which aims at minimization of the structured singular

value (Zhou et al. 1996) may ensure robust stability and robust

performance in the presence of exogenous disturbances, noises

and different type of uncertainties. The high order of the

controller obtained is usually pointed out as a disadvantage

of µ–synthesis. However, with the appearing of powerful and

cheap processors in the recent years this peculiarity of the

µ–synthesis does not pose a significant difficulty.

In contrast with the theoretical achievements, the practical

implementation of robust control laws is still in its beginning.

There is a few real life applications of high order robust control

laws reported in the literature (see for instance (Bautista-

Quintero and Pont 2008; Howlader et al. 2013; Raafat et al.

2012). The main obstacle of robust control laws implementa-

tion is the difficulties related to the development, testing and

verification of the necessary real-time software which is highly

dependent on the type of digital controller platform used.

These difficulties are reduced significantly using the recent

technologies for automatic code generation and embedding

implemented in MATLAB
R©/Simulink

R©program environment

(Simulink Coder 2013).

This paper is devoted to various issues related to the design

and practical implementation of high order robust control

laws. We consider derivation of plant uncertainty models us-

ing analytical or identification procedures, implementation of

different schemes for µ-synthesis, choice of weighting filters

and controller order reduction. Additional important problems

arising in the framework of embedded control systems, like

removing the sensor drifts, generation of control code from

Simulink
R©and effect of single precision arithmetic on the

controller stability, are discussed in some details. As a case

study we present the robust control of two-wheeled robot using

µ-controllers of order up to 30.

The paper is organized as follows. First, we consider the

derivation of uncertain plant models using analytical models

or identification procedures. We present the difficulties related

to the identification of uncertain models by an example. In

the next Section we give a brief overview of Robust Control

Theory based on the usage of structured singular value µ .

Several implementation aspects of µ-synthesis are discussed

including weighting filters selection and D-K-iterations con-

vergence. The third Section is devoted to the implementation

of robust controllers in embedded control systems. The issues

discussed involve removing the sensor drifts and effect of

single precision arithmetic on the controller stability. In the

final Section we present as a case study the design and

implementation of robust controller intended for stabilization

of two-wheeled self-balancing robot. The experimental results
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Fig. 1. Uncertain plant

confirm that the closed-loop system achieves both robust

stability and robust performance in respect to the uncertainties

related to the identification of robot model.

DERIVATION OF UNCERTAIN PLANT MODELS

As noted in (Bittanti and Garatti 2012), control science is

basically a model based discipline and the performance of

control is determined by the accuracy of the model represent-

ing data. Building uncertain system models is an important

step in the design of robust control systems. Unfortunately,

the derivation of uncertain plant models may be much more

difficult in comparison with modeling of plants with negligible

uncertainties.

Implementation of analytical models

In practice, it is preferable to have an analytical nonlinear

plant dynamics model which is used in the derivation of

linearized uncertainty model. The analytical models allow to

obtain easily both structured (parametric) and unstructured

(complex) uncertainty models. Also, the analytical description

may be used to obtain the so-called parameter-dependent

model (Gahinet et al. 95, Ch. 2) which depends on parameters

that may undergo large variations along the time.

Implementing the nonlinear model in Simulink
R©, it is

possible to use the corresponding functions of Robust Control

Toolbox
R©3 to linearize the plant and extract an uncertainty

model represented in Figure 1. The linearized uncertain plant

model G is in the form of Linear Fractional Transformation

(LFT), where Gnom is the transfer function matrix of the nom-

inal model and ∆ is a block-diagonal uncertainty matrix. The

Robust Control Toolbox
R©3 functions also allow to obtain the

time and frequency response characteristics of the uncertainty

plant models.

Implementation of identification procedures

Frequently, a reliable analytical model of the plant dynamics

is not available and the system designer is faced with the

necessity to identify the model from experimental data. As

it is well known (Isermann and Münchhof 2011; Landau and

Zito 2006; Ljung 1987) identification from noisy data may

represent a difficult task especially in case of unstable plant

when the measurements are obtained in closed-loop.

The following example illustrates the difficulties in deriving

uncertainty model of an unstable plant using the functions of

System Identification Toolbox
R©3 .

Fig. 2. Input-output data used in the identification

The input-output data obtained by closed-loop experiment

for a single-input, single-output system is shown in Figure

2. It consists of 3000 measurements with sampling period of

0.005 s, additional 200 data samples being used for model

validation. Based on the three criteria - model loss function,

Akaike information index and Rissanen index - a fourth order

Box-Jenkins model is chosen for further identification. It is

done by the function bj using data sets of 1000, 2000 and

3000 data samples. In all three cases the models obtained

pass through the test of autocorrelation and crosscorrelation

function of model residuals, which indicates unbiased param-

eter estimates. The latter condition guarantees that the exact

parameter values are contained in the confidence intervals of

estimates with probability close to 1. Based on confidence

intervals, maximum relative deviations from nominal models

are obtained, which may be used to derive models with

unstructured uncertainty. In Figures 3 - 8 we show bounds on

the relative uncertainties derived for the three models along

with the Bode plots of the corresponding uncertain plant

models.

It is seen from the Figures that the picks of the relative

uncertainties derived vary between 1.3 for the case of 2000

samples and 4.3 for the case of 1000 samples. Clearly, the

uncertainty model obtained for 1000 data samples is not

appropriate for controller design. So different results for the

uncertainty bounds show that additional optimization is neces-

sary in order to obtain a model with minimum of uncertainty

bound. The alternative is to use special identification methods

for uncertainty models, see for instance (Gugercin et al. 2003;

Van den Hof 2001; Venkatesh 2003).

ROBUST CONTROL DESIGN

Consider a control problem in the Linear Fractional Trans-

formation shown in Figure 9.

The system denoted by P is the open-loop connection and

represents all known elements including the nominal system

model and the performance weighting functions, as well as the

7



Fig. 3. Relative uncertainty for 1000 samples

Fig. 4. Uncertain model for 1000 samples

Fig. 5. Relative uncertainty for 2000 samples

Fig. 6. Uncertain model for 2000 samples

Fig. 7. Relative uncertainty for 3000 samples

Fig. 8. Uncertain model for 3000 samples
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Fig. 9. Uncertain closed-loop system

Fig. 10. M−∆ loop for robust stability analysis

uncertainty weighting functions. The block ∆ parameterizes

all supposed model uncertainty. The controller is denoted by

K. Inputs to P are three sets of signals: inputs u∆ due to

the uncertainty, references and disturbances w and controls

u. Three sets of outputs are generated: outputs y∆ due to the

uncertainty, errors or controlled outputs z and measurements

y.

For the aim of robust stability analysis, it is convenient

to represent the uncertain control system by the M−∆ loop,

shown in Figure 10. In this loop the transfer function of the

nominal part (denoted by M) is separated from uncertain part

(denoted by ∆). We have that M = Fℓ(P,K) where Fℓ(P,K)
denotes the transfer function matrix of the lower Linear

Fractional Transformation of P and K. It is possible to prove

that the system shown in Figure 10 will achieve robust stability

for all ∆ if and only if

µ∆[M( jω)]< 1 (1)

where µ∆(Fℓ(P,K)) is the structured singular value of the

closed-loop system (Zhou et al., 1996). The design goal is

to determine a controller K, stabilizing the nominal system

as well as for all ∆,maxω σ̄ [∆( jω)] ≤ 1. The closed-loop

system achieves robust performance if the system is stable

and satisfies the performance criterion

‖FU [M,∆]‖∞ < 1 (2)

where FU (M,∆) is the transfer function matrix of the upper

LFT of M and ∆. For given arbitrary K this criterion may be

tested by using the robust performance test on the nominal

part M = Fℓ(P,K). The robust performance test should be

performed in respect to the extended uncertain structure

∆P
def
=

{[

∆ 0

0 ∆F

]

: ∆F ∈ C
nw×nz

}

, (3)

Fig. 11. Block-diagram of the closed-loop system

where ∆F is a fictitious complex (unstructured) uncertainty.

The system with controller K achieves robust performance if

and only if

µ∆P
(Fℓ(P,K)( jω))< 1 (4)

where µ∆P
(Fℓ(P,K) is structured singular value determined

with respect to the extended uncertainty ∆P.

In the case of H∞-design we look for a controller which

ensures

‖M(s)‖∞ < γ (5)

for a small positive number γ . Note that the system uncertainty

is not taken into account in the H∞-design.

The main disadvantage of the H∞-design is that it does not

allways ensure robust stability and robust performance of the

closed-loop system in presence of uncertainty in the plant G.

µ-synthesis problem

The µ–synthesis is one of the most important techniques

in Robust Control Design. For properly chosen weighting

functions this design method usually produces a controller

that ensures both robust stability and robust performance of

the closed-loop system.

Consider a control problem shown in Figure 11.

The aim of the µ–synthesis is to minimize the peak value

of the structured singular value µ∆P
(.) of the closed-loop

transfer function matrix Fℓ(P,K) over the set of all stabilizing

controllers K. This is written as

min
K

stabilizing

max
ω

µ∆P
(Fℓ(P,K)( jω)). (6)

The µ-synthesis has the following features.

1) Good disturbance attenuation and noise suppression.

2) Achieves stability and performance robustness.

3) Doesn’t require accurate plant model.

4) Difficult tuning of the weighting functions.

5) The controller order is higher than the order of the H∞

controller.

Consider how to set the performance requirements in the

µ-synthesis.

The design goal is to achieve robust stability and robust

performance of the closed-loop system shown in Figure 12 in

the presence of plant uncertainty and output disturbances. The

matrix transfer functions Wp and Wu are frequency dependent

weighting functions (filters) that will be called weighting

9



Fig. 12. Block-diagram of the closed-loop system

Fig. 13. Design of two-degree-of-freedom controller

performance function and weighting control function, respec-

tively. The role of the function Wp is to “penalize” the

difference between system output y and reference r in desired

low frequency range and the role of the function Wu is to limit

the magnitude of control action u.

The closed-loop system is described by

z = Tzww, (7)

where

z =

[

z1

z2

]

, w =

[

r

d

]

,

Tzw =

[

WpSo −WpSo

WuKSo −WuKSo

]

,

and

So = (I−GK)−1

is the output sensitivity transfer function matrix.

To achieve closed-loop robust performance, i.e.

µ∆P
(Tzw( jω))< 1, (8)

means that the condition

‖Tzw‖∞ < 1 (9)

will be fulfilled for each possible plant uncertainty. This, in

turn, guarantees fulfillment of the conditions

‖WpSo‖∞ < 1, ‖WuKSo‖∞ < 1. (10)

Figure 13 illustrates the implementation of the so called

two-degree-of-freedom controller. The goal in this case is

to achieve closeness of the closed-loop system behavior to

the model for all possible plant uncertainties. The usage of

two-degree-of-freedom controller usually lead to better design

results in comparison with the usage of one-degree-of-freedom

controller.

Choice of weighting filters

The performance weighting transfer functions Wp are cho-

sen as low pass filters to suppress the output disturbance d,

and the control weighting transfer functions Wu are chosen

as high pass filters with appropriate bandwidth in order to

impose constraints on the high frequency spectrum of the

control actions [11]. This is based on the assumption that the

disturbance spectrum is in the low-frequency range and the

noise spectrum is in the high frequency range. In some cases it

is necessary to modify the weighting functions many (hundred

and more) times in order to achieve the desired closed-loop

behavior which is one of the few disadvantages of the µ-

synthesis. The choice of weighting functions may be done by

implementing optimization procedures.

Implementation of D-K iterations

The µ synthesis is done via the so called D-K iterations

(Zhou et al. 1996) which represent an approximate method

for finding the minimum of pick value of µ . These iterations

are realized in Robust Control Toolbox
R©3 by the function

dksyn(Balas et al. 2013). The convergence of D-K iterations

is not guaranteed and in some cases one may observe very

poor iteration behavior or even divergence. In such cases

it is possible to make slight changes in the performance

weighting functions or in the model parameters in order to

improve the convergence. Also, the inclusion of small noises

in some system inputs may have very good impact on the D-K

iterations.

Below we give some recommendations about how to do in

practice the µ-synthesis.

1) Due to the efforts necessary to derive the uncertain

plant model and the almost unavoidable complication

of the controller designed it is appropriate to begin

with simplified uncertainty description in order to see

wether the performance requirements can be met. Only

in the case when these requirements are satisfied, it is

appropriate to consider more complicated uncertainty

descriptions including, for instance, parametric uncer-

tainties to ”sharpen” the design with more accurate

uncertainty model.

2) The usage of µ means worst-case analysis so one

should be cautious when introducing many sources of

uncertainties, disturbances and noises. In such a case

it becomes less and less possible for the worst case

to appear and the analysis and design performed may

become unnecessarily conservative.

3) There is always uncertainty in respect to inputs and

outputs so that it is reasonable in the general case to

include diagonal input and output uncertainties. The

relative (multiplicative) uncertainty is very appropriate

for this aim.

10



Fig. 14. Block-diagram of an embedded control system

4) In the practical design it is customary to obtain values

of µ that exceed one. This may result from very high

requirements to the closed-loop performance which are

impossible to satisfy for the given plant. In such a case

it is necessary to loosen the requirements setting other

performance and/or control action weighting functions.

Finding a controller that ensures value of µ less than one

means that the requirements set are possible to achieve.

In other cases it may be necessary to design con-

troller with different structure, for instance two-degree-

of-freedom controller, in order to fulfil the requirements

posed.

5) In case of a discrete-time system it is appropriate to

perform the controller design initially in the continuous-

time case. This is due to the fact that the best pos-

sible performance may be obtained in the continuous-

time case which can then be considered as a limit for

discrete-time designs. Also, in the continuous-time case

it is easier to find appropriate performance weighting

functions that again may be implemented in the discrete-

time design.

CONTROLLER IMPLEMENTATION

Embedded control systems

Implementation of robust controllers in real-time is done

by embedded control systems which are characterized by the

fact that the control software is stored in read-only memory

(Hristu-Varsakelis and Levine 2005, Part III). The process

of embedding the control software by using MATLAB
R©and

Simulink
R©is illustrated in Figure 14. The robust control law

is designed in MATLAB
R©and its Simulink

R©model is trans-

lated to the embedded processor using the automatic genera-

tion code tools Simulink Coder
R©(Simulink Coder 2013) and

Embedded Coder
R©(Embedded Coder 2013). The embedded

systems used for motion control usually implement Micro-

electromechanical systems (MEMS) sensors.

Integration of hardware and software in embedded con-

trol systems proceeds in three phases: software-in-the-

loop, processor-in-the-loop and hardware-in-the-loop. In

the first phase the hardware is represented entirely by

Simulink
R©models. The control code is generated automati-

cally from Simulink
R©model and is validated off-line by sim-

ulation of the closed-loop system. At this stage it is possible

to use Monte Carlo simulation which can take into account

parametric variations and nonlinear effects. In the second

phase the control code is tested in the real-time embedded

processor using hardware simulated by Simulink
R©models.

Finally, in the third phase the control code is tested with

the prototyped hardware in order to verify the integrated

functional and operational performance in real environment

(strong disturbances, noises and parametric variations). This

technique makes possible to examine rapidly different control

laws reducing in the same time the danger of accidents during

real experiments.

The embedded control systems have the following distin-

guishing features.

1) Signals are presented as fixed-point integers or single

precision numbers. Floating-point arithmetic may be em-

ulated or implemented by integrated hardware floating-

point unit.

2) The controller model should be modified to include I/O

interfaces with the external devices.

3) The MEMS sensor noises may be intensive in some

frequency ranges.

Analysis of embedded control systems requires the usage

of methods pertaining to the theory of hybrid control systems

(Lunze and Lamnabhi-Lagarrigue 2012).

Removing the sensor drift

The MEMS sensor errors consist of deterministic and

stochastic parts. The deterministic part includes constant bi-

ases, scale factors, axis misalignment and so on, which are

removed from row measurements by the corresponding cali-

bration techniques. The stochastic part contains random errors

(noises) which cannot be removed from the measurements and

should be modeled as stochastic processes.

As an example, consider the MEMS gyroscope used in

motion control. Its noise typically consists of the following

terms:

• Bias instability. This is a stationary stochastic process

which may be considered as a low-order zero-mean

Gauss-Markov process.

• Angular random walk. This is an angular error process

which is due to white noise in angular rate.

• Rate random walk. This is a rate error due to white noise

in angular acceleration.

• Discretization error. This is an error representing the

quantization noise.

Several other noise terms are described in detail in (IEEEStd

952-1997).

Different techniques for building models of MEMS sensor

noises are presented in (El-Sheimy et al. 2008; Quinchia et

11
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al. 2012; Petkov and Slavov 2010), to name a few. Usually,

they exploit the autocorrelation function of the noise in order

to obtain 1st order Gauss-Markov or higher order Auto-

Regressive models. Note that it is desirable to keep the model

order as low as possible since the model is frequently used

in the design of Kalman filter to determine optimal estimates

based on the sensor measurements.

Stochastic discrete-time models of MEMS gyro are obtained

on the basis of frequency-domain and time-domain character-

istics of the sensors noises. For this aim it is possible to use

the power spectral density of gyro noise (see Figure 15) and

the so called Alan variance (Allan 1966) shown in Figure 16.

By using nonlinear least-squares minimization it is possible

to determine the numbers B, N and K which characterize

bias instability, angular random walk and rate random walk,

respectively.

Fig. 17. Influence of the precision used on controller poles

Influence of the working precision

The robust control laws are designed in MATLAB
R©using

double precision (64 bits) floating point arithmetic. In the best

case, these control laws are implemented in the embedded

processor by using single precision (32 bits) arithmetic. This

circumstance may affect significantly the behavior of the

discrete-time closed-loop system. As an example we show in

Figure 17 the poles of a discrete-time robust controller of order

40 implemented in double and single precision. As it is seen

from the Figure, the controller implemented in single precision

becomes unstable which is undesirable in practice. This shows

that controller stability in single precision should be checked

after the design in MATLAB
R©.

A CASE STUDY: ROBUST CONTROL OF

TWO-WHEELED ROBOT

Two-wheeled robots have several applications which make

them interesting from theoretical an practical point of view.

The most popular commercial product, built on the idea of self

balancing two-wheeled robot is the Segway
R©Personal Trans-

porter (PT), produced by Segway Inc., USA (Segway 2012).

Some of the Segway
R©PTs have maximum speed of 20 km/h

and can travel as far as 38 km on a single battery charge. The

self-balancing two-wheeled robot NXTway-GS (Yamamoto

2015), built on the basis of the LEGO
R©Mindstorms NXT de-

veloper kit, is widely used in education. Also, the telepresence

and video conferencing two-wheeled robot Double
R©(Double

2014) is very popular recently.

The two-wheeled robots have dynamics which is similar to

the inverted pendulum dynamics so that they are inherently

unstable and should be stabilized around the vertical posi-

tion using a control system. Linear-quadratic or proportional-

integral-derivative (PID) control laws are usually implemented

in order to achieve vertical stabilization and desired position

in the horizontal plane.

12



Fig. 18. Two-wheeled robot in self-balancing mode

Fig. 19. Robot motion in vertical and horizontal planes

In this section we present the design and experimenta-

tion of a robust control system of two-wheeled robot which

implements a µ-regulator for vertical stabilization and a

proportional-integral controller of the robot rotation around

the vertical axis. Due to the lack of accurate analytical

robot model, the control system design is done by using

a model built with the aid of an identification procedure.

A discrete-time Kalman filter of 2nd order is implemented

to estimate the plant dynamics around the vertical axis. A

software in MATLAB
R©/Simulink

R©environment is developed

for generation of control code which is embedded in the

Texas Instruments Digital Signal Controller TMS320F28335.

Results from the simulation of the closed-loop system as

well as experimental results obtained during the real-time

implementation of the controller designed are given.

Robot description

The robot is equipped with two servo drives for actuation,

MEMS inertial sensor ADIS16350 for measuring the angular

velocities φ̇ and ψ̇ of robot body in the vertical plane and

around the vertical axis, respectively, quadrature encoders for

measuring the position of the wheels and a digital signal

controller Texas Instruments TMS320F28335 implementing a

discrete real-time stabilization algorithm with sampling period

T0 = 0.005 s. The robot balancing is achieved by rotating the

Fig. 20. Block-diagram of the control system

Fig. 21. Representation of robot dynamics

wheels in appropriate direction. The computation of control

actions to both DC brushed drive motors is realized in single

precision on the basis of signals from the gyro sensor mea-

suring the angular rate (and, after integration, the tilt angle

φ ) and signals from rotary encoders measuring the wheels

rotation angles. The control of the DC motors is executed by

Pulse Width Modulated (PWM) signals. A 2nd order Kalman

filter is used to estimate the yaw angle ψ .

Model identification

The block-diagram of the two-wheeled robot control system

is shown in Figure 20.

In order to simplify the robot dynamics it is assumed that

the motions in vertical and horizontal planes are independent.

This allows to represent the robot dynamics by a single-input

single-output plant as shown in Figure 21.

In respect to the stabilization in upper equilibrium state

and to the control of forward-backward motion, the robot is

described by Auto Regressive Moving Average with eXternal

input (ARMAX) and Box-Jenkins (BJ) discrete-time models,

respectively. For this aim we use the corresponding func-

tions from System Identification Toolbox
R©3 (Ljung 2013).

The ARMAX model of 7th order with structure parameters

na = 7,nb = 7,nc = 7,nk = 3 describes the link between the

control signal u and the rate φ̇ , while the BJ model of 3rd order

with structure parameters nb= 3,n f = 3,nc= 3,nd = 3,nk = 1

gives the link between the rates φ̇ and θ̇ = (θ̇L + θ̇R)/2

where θ̇L and θ̇R are the angular velocities of left and right

wheels, respectively. ARMAX and BJ models, resulting from

identification, are assumed as nominal and have the form

φ̇(z) = Gφ̇u,nom(z)u(z)+νφ̇ (z), (11)

θ̇(z) = Gθ̇ φ̇ ,nom(z)+νθ̇ (z) (12)

13



Fig. 22. Input multiplicative uncertainty
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Fig. 23. Approximation of the relative uncertainty in Gφ̇ ,u

where Gφ̇u,nom(z) is the nominal transfer function from u to φ̇ ,

Gθ̇ φ̇ ,nom(z) is the nominal transfer function from φ̇ to θ̇ , the

noises νφ̇ ,νθ̇ are obtained during the identification procedure

and reflect the uncertainty in the model found. These noises are

represented as models with input multiplicative uncertainties

which are used in the design of robust controller.

Condition of unbiased parameter estimates guarantees that

the exact parameter values are contained in the confidence

intervals of estimates with probability close to 1. This allows

derivation of multiplicative uncertainty models of the transfer

functions Gφ̇u and Gθ̇ φ̇ in the form of LFT shown in Figure 22.

Based on confidence intervals, maximum relative deviations

from nominal models are obtained. These deviations are

approximated, through optimization procedure, with shaping

filters which are represented by transfer function of 9th and

5th order, respectively.

The maximum relative uncertainties in Gφ̇ ,u and Gθ̇ ,φ̇ along

with their approximations are represented in Figures 23 and

24, respectively.

Resulting uncertain models for the robot vertical and lon-

gitudinal motion are

Gφ̇u(z) = Gφ̇u,nom(z)(1+Wφ̇u(z)∆φ̇ ), (13)

Gθ̇ φ̇ (z) = Gθ̇ φ̇ ,nom(z)(1+Wθ̇ φ̇ (z)∆θ̇ ) (14)

where Wφ̇u(z),Wθ̇ φ̇ (z) are the corresponding shaping filters ob-

tained by approximations of the relative magnitude deviations
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Fig. 24. Approximation of the relative uncertainty in Gθ̇ ,φ̇

Fig. 25. Bode plot of Gφ̇ ,u

and ∆φ̇ ,∆θ̇ are uncertainties which satisfy

|∆φ̇ |< 1,∆θ̇ < 1.

The Bode plots of the uncertain models Gφ̇ ,u and Gθ̇ ,φ̇ are

shown in Figures 25 and 26, respectively.

Controller design

The closed-loop system block-diagram corresponding to the

µ-synthesis problem is shown in Figure 27. In order to obtain

better position accuracy a feedback from the integral of the

tracking error rθ −θ to the controller is introduced (Goodwin

et al. 2001). The control actions to the plant are realized by a

Digital Signal Controller in real time with sampling frequency

fs = 200 Hz. For this reason the µ-synthesis is implemented

to design a discrete-time controller at this sampling frequency.

To obtain good performance of the closed-loop system we

shall implement a two-degree-of-freedom controller (Gu et

14



Fig. 26. Bode plot of Gθ̇ ,φ̇

Fig. 27. Block-diagram of the closed-loop system

al. 2013). The control actions are generated according to the

expression

uc = [Kr Ky]

[

rθ

yc

]

= Krrθ +Kyyc, (15)

where rθ is the wheels reference angle and

yc =

[

φ̇ , θ̇ ,
∫

(rθ −θ)

]T

is the output feedback vector, Ky is the output feedback transfer

function matrix and Kr is the pre-filter transfer function.

The weighted closed-loop system outputs ep and eu satisfy

the equation
[

ep

eu

]

=

[

WpSoGKr

WuSiKr

]

rθ (16)

where the matrix Si =(I−KyG)−1 is the input sensitivity trans-

fer function matrix, So = (I−GKy)
−1 is the output sensitivity

transfer function matrix and G = Gφ̇uGθ̇ φ̇ .

The performance criterion requires the transfer function

matrix from the exogenous input signal rθ to the output signals

ep and eu to be small in the sense of ‖ · ‖∞, for all possible

uncertain plant models G. This leads to small weighted signals

φ̇ , θ̇ and
∫

(rθ − θ) and small control action. The transfer

function matrices Wp and Wu are used to reflect the relative

Fig. 28. Bode plot of the closed-loop system

importance of the different frequency ranges for which the

performance requirements should be fulfilled.

The µ-synthesis is done for several performance weighting

functions that ensure a good balance between system per-

formance and robustness. On the basis of the experimental

results, we choose the performance weighting function (in the

continuous-time case) as

Wp(s) =





52.2 0.005s+1
s+1

0 0

0 0.029 0.6s+1
0.007s+1

0

0 0 4.7 4s+1
125s+1





and the control weighting function as

Wu(s) =
1

30000

1
0.007

s+1
1

200
s+1

.

The performance weighting functions are chosen as low pass

filters, and the control weighting function is chosen as high

pass filter with appropriate bandwidth in order to impose

constraints on the spectrum of the control actions. These

functions are discretized for the sampling frequency of 200

Hz and included in the open-loop system model.

The µ-synthesis is performed by using the

MATLAB
R©function dksyn (Balas et al. 2012). In order to

obtain better convergence of the D-K iterations two small

noises nφ̇ and nθ̇ with intensity 10−4 are added to the

angular velocities φ̇ and θ̇ , respectively. Three iterations are

performed that decrease the maximum value of µ to 0.693.

The final controller obtained is of 50th order.

The Bode plot of the closed-loop system is shown in Figure

28. It is seen that the closed-loop bandwidth is approximately

1 rad/s.

The magnitude plot of the closed-loop in respect to the

tracking error eθ = rθ −θ is shown in Figure 29.

In Figures 30 and 31 we show the influence of the noises

in φ̇ and θ̇ , respectively, to the control action u. It is seen that

the effect of noise in φ̇ is much stronger than the effect of

noise in θ̇ .
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Fig. 29. Magnitude plot of the tracking error

Fig. 30. Sensitivity of control to noise in φ̇

Fig. 31. Sensitivity of control to noise in θ̇

Fig. 32. Robust stability and performance of the closed-loop system

Finally, in Figure 32 we show the plots of the structured

singular values corresponding to the robust stability and robust

performance of the closed-loop system. The system achieves

both robust stability and robust performance in respect to

the uncertainties corresponding to the identification of robot

model.

A PI controller of the angular motion around the vertical

axis is also designed. The yaw angular velocity ψ̇ is measured

by a gyroscope of the same type as the gyro used to measure

the tilth rate. This gyroscope contains a significant noise ψg

which is modeled by the additional equation

ψ̇g(k+1) = ψ̇g(k)+ Jgνg(k) (17)

where νg is a white gaussian noise with unit variance and the

coefficient Jg is determined experimentally to obtain a good

estimate of ψ̇ as Jg = 0.0001. A second order Kalman filter

is designed to produce sufficiently accurate estimate ψ̂ of the

yaw angle.

Experimental results

A simulation scheme of the control system and a specialized

software in MATLAB
R©/Simulink

R©environment is developed

to implement the control code. To simplify the controller, its

order is reduced from 50 to 30. With the aid of Simulink

Coder
R©[27] and Code Composer Studio

R©, a code is gen-

erated from this software which is embedded in the Texas

Instruments Digital Signal Controller TMS320F28335 [26].

Several experiments with the controller designed are per-

formed and comparison with the simulation results is done.

The experimental results obtained during the real-time robot

control are given in Figures 33 - 36.

It is seen form the Figures33 and 34 that the wheels track

accurately the reference and the robots keeps well its vertical

position. The measured angle φ contains a significant bias

which is removed by using off-line a 17th order Kalman filter.

It is interesting to note that this bias does not affect the vertical

stabilization of the robot which is due to the good filtration

16



Fig. 33. Tracking position reference

Fig. 34. Body angle variation

Fig. 35. Tracking yaw angle reference

Fig. 36. Control action

properties of the system with µ-controller. The usage of the

estimate ψ̂(k), obtained by a 2nd order Kalman filter, instead

of ψ(k) ensures exact rotation of the robot around the vertical

axis, while there is a increasing with the time bias in the

measured value of ψ(k) due to the integration of the gyro

noise (Figure 35). The control action does not exceed 40 units

with maximum allowable value equal to 50 (Figure 36).

CONCLUSIONS

The paper presents a brief survey of several issues arising

in the design and implementation of robust control laws in

embedded control systems. Some difficulties and unsolved

problems that require further research are pointed out. A case

study of robot control design is presented which illustrates

the progress in the implementation of high order robust

controllers. Several references are included which may help

the reader to find more detailed information about the topics

discussed.
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