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Abstract. A predator-prey model with an epidemic model of SEIR (Susceptible-Exposed-Infected-Recovered) and SIERS 

(Susceptible-Exposed-Infected-Recovered-Susceptible) in the prey population is introduced. The epidemic disease had been 

described by the SEIR and the SEIRS models. A logistical growth function appears in the susceptible prey population. The 

predation function is given in the five nonlinear ordinary differential equations. They present the dynamics’ of the species’ 

population. The main focus of this article is to propose an eco-epidemiological model that can be implemented by a chemical 

reaction network. The studied chemical reaction network is a mathematical-chemical apparatus through which a parallel 

between the change of reactant concentrations and the dynamics of the populations can be made. The authors present a 

chemical reaction network which describes the considered model indicating the obtained differential equations. The main law 

that is used is the law of mass action kinetics. Some numerical experiments are given. 

INTRODUCTION: ECO-EPIDEMIOLOGICAL AND CHEMICAL REACTION 

NETWORK THEORY 

Epidemiology is a science that studies the causes of the occurrence and spread of various types of diseases 

(infections) in human organisms and animal species. Based on the scientific information through the years, some 

scientists strive to predict the development of diseases over time in order to limit or eliminate the spreading of 

infections. Mathematical ecology and epidemiology are two distinct areas of applied mathematics in the field of 

biology. Their combination is called eco-epidemiology and it has been a subject of research since 1990. The purpose 

of the eco-epidemiological models is to describe the ecosystems which give the interactions between the individual 

populations in the presence of an infection. The discovery of the epidemiological model SIRS (Susceptible-Infected-

Recovered-Susceptible) by Kermack-McKenrick [1], gave impetus to the development of mathematical 

epidemiology. Nowadays a lot of researchers are interested in mathematical models of infectious diseases like SI 

(Susceptible-Infected), SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-Recovered) and SEIR 

(Susceptible-Exposed-Infected-Recovered) and are trying to apply them to the Lotka-Volterra model or also known 

as a predator-prey model [2]. 

 These eco-epidemiological models can be classified depending on the prevalence of contagion into three 

distinct categories:  

(i) contagion in the prey [3, 4, 5]; 

(ii) contagion in the predator [6];  

(iii) contagion in both animal species [7, 8].  

The infection in the predator occurs after the consumption of the victim (it is the so-called predation) [7, 8].  
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 Chemical reaction network theory (CRNT) is an area of applied mathematics that describes the behavior of 

the chemical systems in the real world. The chemical kinetics similar to the formal kinetics of transfer phenomena 

describe the course of the reactions by using the apparatus of the kinetic equations. These equations show the change 

in the concentration of the participating chemical substances in time [9]. Since their appearance in the 1864 [21, 22, 

23], chemical kinetics has become an object of interest in the research community due to its application in 

biochemistry and theoretical chemistry. The application of the chemical reactions of the living systems can be found 

in enzyme-catalytic reactions, destruction of biopolymers, coupled reactions and in the nonlinear chemical systems 

of closed and open type. Another application that is an object of scientific interest is the study of the dynamics of 

various mathematical, physical, chemical and biological models. For example, the description of the populations’ 

dynamics can be given by biological growth-decay functions. In ecological or eco-epidemiological models it can be 

represented by kinetic equations [10,11,12,13,14]. When we speak about a chemical system we have to keep in mind 

the basic principle of converting the chemical reactions into a corresponding set of kinetic (rate) equations by using 

the law of mass action. Usually, rate equations describe the change in the concentration of the given chemical 

substance of the corresponding reaction in time, see [15,16]. The set of kinetic equations forms an ordinary 

differential system which can be linear or non-linear.  

 There are two approaches of forming a relationship between the chemical equations and a given 

mathematical model: 

(i) “direct” method – when the chemical equation is given, then the mathematical model represented by ordinary 

differential equations is constructed; 

(ii) “inverse” method – when from a given mathematical model described by ordinary differential equations we 

can obtain the corresponding chemical equations; 

 The reaction network (RN) is a mathematical-chemical apparatus by which a parallel between the change in 

concentrations of the chemical substances and the dynamics of the populations can be made. The RNs consists of a 

set of chemical species or compounds denoted by X and a set of chemical reactions denoted by R. Each of these sets 

convert a multiset of educts into a multiset of products [20]. Depending on the application, this simple construction 

may be enlarged by assigning properties such as mass, energy, sum formulas or structural formulas to the 

compound. On the other hand, not all RNs necessarily admit a chemical interpretation. A good advantage of the RNs 

is that they may contradict some fundamental principles of physics such as the conservation of energy and mass or 

the reversibility of chemical reactions when they are compared with epidemic models. Knowledge of the reaction 

networks’ structure allows the given model to compute better the epidemic dynamics at the population scale from 

the individual-level behavior of infections [19]. The main focus of this paper is to show a relationship between a 

given eco-epidemiological model and its corresponding chemical reaction network using the inverse approach. As a 

result the structure of the resulting reaction network gives more information about the dynamics of the considered 

epidemic. 

 The present paper is constructed in four sections. The introductory part is given in Section 1. The chemical 

reaction networks’ theory and the transformation into ODEs using the law of mass action is given in Section 2. In 

this section we introduce an example of a chemical reaction network for a “direct” method of achieving an eco-

epidemic predator - prey model in the presence of the SIS disease. Section 3 has two subsections where the focus is 

on the reaction network of a predator-prey model with the SEIR and the SEIRS epidemic in the prey population. In 

Section 4 we give the relationship between the dynamics of a pair of individual populations and a pair of 

concentrations of the chemical substances corresponding to the considered animal species. This relationship is 

illustrated by some graphics which are obtained by using the online software SmoWeb [17]. The main emphasis of 

the paper is on the biological interpretation of the chemical equations through which the reaction networks of the 

given model are formed. 

PRELIMINARIES: REACTION NETWORKS AND THEIR TARNSFORMATION INTO 

ORDINARY DIFFERENTIAL EQUATIONS 

 This section aims to acquaint the reader with the basics of the chemical reaction network theory and its 

application in mathematical modeling. The method of a reaction network’s “translation” into a system of ordinary 

differential equations (ODEs) by using the principle of “kinetic mass action” is illustrated by an example. Using this 

method of translation, the reaction network becomes a unique mathematical apparatus through which the bio-

chemical interpretation of the chemical equations can be easily understood. The ordinary differential equations 

system determines the change in masses (concentrations, densities) of the species. In the chemical systems’ theory 
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the fundamental principle of transformation from a chemical reaction network to a set of ordinary differential 

equations which in chemistry are called kinetic equations is accomplished by the law of mass action. In chemistry 

these equations are called kinetic equations. The simple (elementary) reactions can be given by: 

                                                                    𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 
𝑘
→  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠,                                                                      (1) 

where the rate of the homogeneous chemical reaction is determined by the change in the concentration of one of the 

chemical species involved in it per unit time. 

 Let the chemical species A, B, C and D be given in such a way that n molecules of the species A and m 

molecules of the species B react to p molecules of the species C and q molecules of the species D. Then the chemical 

reaction is the following: 

    𝑛 𝐴 +  𝑚 𝐵 
𝑘
→  𝑝 𝐶 +  𝑞 𝐷  

                                                                                                                                                                                    (2) 

𝑣 =  − 
𝑑[𝐴]

𝑑𝑡
, 

The sign (-) indicates that the concentration of the species A decreases in time. The concentration’s change of the 

chemical species A is connected with the change of the remaining species B, C and D, as it is shown in the 

stoichiometric equation (2). As the products C and D increase in time, 𝜇= 
𝑑[𝐶]

𝑑𝑡
 then the rate that describes the change 

in their concentration will have a positive sign, i.e. (+). The rate of the concentration’s change can be defined as: 

Reaction rate = - rate of consuming one unit of reactant = + rate of creating one unit of product 

 In this case we obtain: 

                                        𝑅𝑎𝑡𝑒 =  
1

𝑝

𝑑[𝐶]

𝑑𝑡
=
1

𝑞

𝑑[𝐷]

𝑑𝑡
= −

1

𝑛

𝑑[𝐴]

𝑑𝑡
= −

1

𝑚

𝑑[𝐵]

𝑑𝑡
 =  𝑘𝐴𝑛

′
𝐵𝑚

′
                                              (3) 

where the constant k is a rate constant and it represents the reaction’s rate under the standard conditions [A] = [B] = 

1 mol/l. 

 

 Let us consider some of the basic chemical reactions and their kinetic equations, applying the law of mass 

action: 

a) Constant supply: The product A appears in the system with a constant rate k. 

(𝑠𝑜𝑢𝑟𝑐𝑒) 
𝑘
→  𝐴 ⇒  

𝑑[𝐴]

𝑑𝑡
= 𝑘. 

This is called a zero-order reaction because the rate does not depend on the concentration of either reactant 

(reagent). 

b) Decay substance: The substance A is transformed into waste at rate k (i.e., A decays and is removed from 

the system). 

𝐴
𝑘
→ ⊘ (𝑤𝑎𝑠𝑡𝑒)  ⇒  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝐴. 

This reaction is called a first-order reaction because the rate depends linearly on the concentration of the single 

reactant. 

c) Transformation: The reactant A is consumed with the product B, being produced from A. 

𝐴
𝑘
→  𝐵  ⇒  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝐴,    

𝑑[𝐵]

𝑑𝑡
= 𝑘𝐴. 

This reaction is the simplest reaction network, having two distinct concentrations evolving due to a single reaction. 

d) Compound formation: The interaction between chemical substances A and B gives C. 

𝐴 + 𝐵 
𝑘
→  𝐶  ⇒  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝐴𝐵,    

𝑑[𝐵]

𝑑𝑡
= −𝑘𝐴𝐵,    

𝑑[𝐶]

𝑑𝑡
= 𝑘𝐴𝐵.   

The production rate of C being proportional to the product of the reactant concentrations follows from a probabilistic 

description of the collision of independent molecules. 

 Let us denote the concentration of the chemical species A by [𝐴]𝑡 ≧ 0.  Then the total production’s rate of 

the chemical species A will be determined by its creation and/or consumption depending on each reaction where it is 

involved, i.e., 

          
 𝑑[𝐴]

𝑑𝑡
= + ∑ (𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)𝑖

𝑁
𝑖=1 − ∑ (𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)𝑖

𝑁
𝑖=1 .          (4) 
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In formula (4) we denote the number of chemical reactions in which the chemical species A is involved by i. Then N 

is the total number of the chemical reactions in the reaction network. For given systems without losses or sources of 

chemical, as in the case of c), the physical expectations which are based on the conservation law suggest that A+B = 

constant. This can be confirmed by evaluating the expression 
𝑑([𝐴]+[𝐵])

𝑑𝑡
 using the kinetic equations or the rate 

equations. This law is called a conservation law and it gives the connection between the products and reactants [18]. 

 The reaction order ϑ is a sum of the exponents to which the concentrations in the kinetic equation (3) are 

raised. In this case ϑ = n' + m'. The molecularity m is the number of the particles involved in the chemical reaction. 

It characterizes the course of an elementary reaction while the reaction order ϑ is related to the course of the entire 

chemical reaction which consists of a series of elementary reactions. For a given elementary reaction, if the degrees 

n' and m' from the kinetic equation (3) match with the stoichiometric coefficients n and m, then the order and the 

molecularity will also match, i.e., ϑ = m. If the reactions proceed in a way that is not reflected correctly by their 

stoichiometric equation then the degrees n' and m' of the kinetic equation will not coincide with the stoichiometric 

coefficients n and m, see [9]. 

 Let us consider some chemical reaction networks’ examples by using the “direct” approach in obtaining the 

eco-epidemiological model with a presence of the SI disease. 

 

Example:  

 

 Let the chemical species S, I and P be given by the following chemical reaction networks: 

(1) 2 ,kP S P     (2) ,P S    (3) 2 ,S I I     (4) ,I S  

where k, μ, ρ, η are positive rate constants. The constructed reaction networks are in a canonical form. 

 

TABLE 1: The chemical reactions and their equations 

          No Chemical reactions Kinetic equations 

 

1. 

 
   

 

 

P + S 
𝑘
→  2𝑃                                                        

 

 

                         [ ]d P
kPS

dt
   

                         [ ]d S
kPS

dt
    

 

2. P 
𝜇
→  𝑆  [ ]d S

P
dt

   

                   [ ]d P
P

dt
    

3. 

 

 

 

                                                                         

 

                        S + I 
𝜂
→  2𝐼 

 

 

   [ ]d I
SI

dt
   

    [ ]d S
SI

dt
    

 

4.  I 
𝜌
→  𝑆 

 [ ]d I
I

dt
 

  

[ ]d S
I

dt
   

  

We denote the strictly positive concentrations of the chemical species S, I and P by [S], [I], [P]. Let the rate 

of change of the chemical substances correspond to the change of the animal species’ populations – a prey and a 

predator. Here the function S(t) represents the population of the susceptible prey, I(t) is the infected prey and the 
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function P(t) represents the predator. In Table 1 we introduce four main chemical reactions and their kinetic 

equations. The chemical interpretations of the kinetic equations are given in Table 6 from Appendix A. 

  

The chemical species S, I and P have a total rate of a production which is obtained as a sum of the right-

hand members of each reaction in which they participate. We will pay attention to the following main models which 

are constructed by two systems of ordinary differential equations: 

                   

[ ]

[ ]

[ ]

d S
kPS P

dt

d I

SI I

S
dt

d P
P

d

I

k S P

I

t

 

 



   

 

 



            (5)                                    

[ ]

[ ]

d S
SI I

dt

d I
SI I

dt

 

 

  

 

                  (6) 

Model (5) is a predator-prey eco-epidemiological model with a presence of the SI disease in the prey population. If 

we look carefully at model (5) we will see that we have some terms colored in red. It is important to say that these 

terms arise from the basic SI model given in (6). Model (6) is the basic SI model. For the models (5) and (6) we 

construct two graphics which show the concentration’s variance of the chemical species S, I and P. 

 

                
(a)                  (b) 

FIGURE 1: The graphics above show the variation of the concentrations of chemical species S, I, P corresponding to the 

following models: (a) the predator-prey eco-epidemiological model with the presence of SI disease; (b) the SI epidemiological 

model 

 

It can be seen that there exists a correspondence in the variation of the concentrations of the chemical species S and I 

for the given two models which are represented by red for S and by blue for I colored lines. 

A REACTION NETWORK OF A PREDATOR-PREY MODEL WITH SEIR AND 

SEIRS EPIDEMIC IN THE PREY POPULATION 

The Mathematical Model 
 

 The presence of the epidemiological SEIR (Susceptible-Exposed-Infected-Recovered) disease or the SEIRS 

(Susceptible-Exposed-Infected-Recovered-Susceptible) disease is given in the prey population of the predator-prey 

model. The response function in the predator-prey model has a Lotka-Volterra type. The eco-epidemiological model 

is described by two systems of five non-linear ordinary differential equations (ODEs) which are given in formula 

(7). The mathematical model describes the behavior of two populations. The first population has a density denoted 

by ( )N t and the second population is called a predator population and it is denoted by ( )P t  where t is a time 

variable. 

 The population of a prey is divided into four groups depending on the stage of the disease in the 

epidemiological model SEIR (or SEIRS). It is described by the following functions: S(t) – susceptible prey; E(t) – 
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exposed to disease prey; I(t) – infected prey and R(t) – recovered prey. The total prey population at time t is: 

( ) ( ) ( ) ( ) ( ).N t S t E t I t R t    Then the ordinary differential system is: 

  

1 1 1

2 2 2

3 3 3

inf

infcov

1 .

exposedinfection predation
species
become
infective

mortalityected
byspecies
thebecome

ectionre ered

dS S E I R
rS SI q SP d S m S

dt K

dE
SI q EP E d E m E

dt

dI
E I q IP d I m I cI

dt

dR

R

dt



 

 




   

       
 

    

     

 4 4 4

1 2 3 4 5 5

mortality migration

I q RP d R m R

dP
q SP q EP q IP q RP d P m P

dt

R   

     

                                    (7)  

 

with initial data 
0(0) 0,S S   

0(0) 0,E E   
0(0) 0,I I   

0(0) 0,R R   
0(0) 0P P   where R  in the first 

equation is a notation for the recovered species that become susceptible, S(t) - susceptible prey, E(t) – exposed prey, 

I(t) –  infected prey, R(t) – recovered prey and P(t) – predator. 

 

 In the literature the eco-epidemiological model is represented by some mathematical assumptions. This 

model can also be presented in its non-dimensional version (8). The theorems for positivity and the system’s 

boundary conditions for (7) have also been proven. The existence of the equilibrium points under certain conditions 

has also been established [5]. 

 

1 1 1

2 2 2

3 3 3

4 4 4

1 2 3 4 5 5

[1 (s e i r)] s i q .

.

. . .

.

ds
s s p d s m s r

dt

de
si q e p e d e m e

dt

di
e i q i p d i m i c i

dt

dr
i q rp d r m r r

dt

dp
q sp q ep q i p q rp d p m p

dt

 

 

 

 

         

    

     

    

     

                                         (8) 

with initial data 0,s   (0) 0,e  (0) 0,i  (0) 0,r   (0) 0.p    

  

Due to the fact that these mathematical models combine in themselves the epidemiological model SEIR or SIERS it 

is necessary to find the reproduction number 
0.R The reproduction number

0R is described in detail in [5] and its 

formula is given by: 

𝑅0 =
𝜎̅𝛽̅𝑠̅∗

(𝑞2̅̅̅̅ 𝑝̅
∗+𝜎̅+𝑑2̅̅ ̅̅ +𝑚2̅̅ ̅̅̅)(𝑞3̅̅̅̅ 𝑝̅

∗+𝛾̅+𝑑3̅̅̅̅ +𝑐+̅𝑚3̅̅ ̅̅̅)
. 

 

From this reproduction number depends the spreading of the infection. If 
0 1R  , then the infection will be quickly 

spread in the population and if 
0 1R  , then the infection will die out in the long run. The reproduction number can 

be estimated by using the non-dimensional parameters and the values of the equilibrium coordinates in the disease-

free equilibrium point E (𝑠̅∗, 0, 0, 0, 𝑝̅∗). 

050002-6

 21 N
ovem

ber 2023 08:09:59



The Model’s Chemical Reaction Network  

Using the “direct” approach given in the example of the previous section, we show how from given chemical 

equations we can create a mathematical model by using their kinetics’ equations. In this subsection we introduce the 

“inverse” method. It is a method that shows how from a mathematical model described by a system of ordinary 

differential equations we can obtain the corresponding chemical equations. 

 
TABLE 2: The chemical reactions, their kinetic equations and their ordinary differential equations 

 

No    Chemical reactions Kinetic Equations                     ODEs 

 1. 

 

𝑋1
𝑟̅
→ 𝑋1 + 𝑋1 

 

𝑑[𝑋1]

𝑑𝑡
 =  𝑟̅. [𝑋1] 

 

𝑠̅′ =  𝑟̅.𝑠̅ 

 2. 

 

𝑋1 + 𝑋1
𝑝̅
→ 𝑋1    

𝑑[𝑋1]

𝑑𝑡
 = −𝑝 ̅. [𝑋1]

2     𝑠̅′ = − 𝑝̅. 𝑠̅2 

 3. 

 

      𝑋1 + 𝑋2
𝜙̅
→𝑋2 + 𝑋2          

𝑑[𝑋1]

𝑑𝑡
 = −𝜙̅ [𝑋1][ 𝑋2], 

         
𝑑[𝑋2]

𝑑𝑡
 = 𝜙̅ [𝑋1][ 𝑋2] 

       𝑠̅′  =−𝜙̅  𝑠̅.𝑒̅, 

            𝑒̅′  = 𝜙̅  𝑠̅.𝑒̅ 

4. 

 

   𝑋1 + 𝑋2
𝜙̅
→ 𝑋1        

𝑑[𝑋2]

𝑑𝑡
 = − 𝜙̅ [𝑋1][ 𝑋2]        𝑒̅′ =−  𝜙̅  𝑠̅.𝑒̅ 

5. 

 

   𝑋1 + 𝑋3
𝑧̅
→𝑋1       

𝑑[𝑋3]

𝑑𝑡
 = −𝑧̅ [𝑋1][ 𝑋3]             𝑖′̅ = −𝑧̅  𝑠̅.𝑖 ̅

 

6. 

 

    𝑋1 + 𝑋3
𝑧̅
→ 𝑋3 + 𝑋3        

𝑑[𝑋1]

𝑑𝑡
 = −𝑧̅ [𝑋1][ 𝑋3], 

     
𝑑[𝑋3]

𝑑𝑡
 = 𝑧̅ [𝑋1][ 𝑋3] 

 

          𝑠̅′ = −𝑧̅  𝑠̅.𝑖,̅ 
         𝑖̅′ = 𝑧̅  𝑠̅.𝑖 ̅

 

7. 

 

  𝑋1 + 𝑋3
𝛽̅/2
→  𝑋3 + 𝑋3      

𝑑[𝑋1]

𝑑𝑡
 = − 

𝛽

2

̅
 [𝑋1][ 𝑋3], 

    
𝑑[𝑋3]

𝑑𝑡
  = 

𝛽

2

̅
 [𝑋1][ 𝑋3] 

 

       𝑠̅′ = −
𝛽

2

̅
  𝑠̅.𝑖,̅ 

    𝑖̅′ = 
𝛽

2

̅
  𝑠̅.𝑖 ̅

8. 

 

  𝑋1 + 𝑋4
𝜃̅
→ 𝑋4 + 𝑋4     

𝑑[𝑋1]

𝑑𝑡
 = - 𝜃̅ [𝑋1][ 𝑋4], 

  
𝑑[𝑋4]

𝑑𝑡
  = 𝜃̅ [𝑋1][ 𝑋4] 

 

      𝑠̅′ = − 𝜃̅  𝑠̅.𝑟̅, 
     𝑟̅′ = 𝜃̅  𝑠̅.𝑟̅ 

9. 

 

𝑋1 + 𝑋4
𝜃̅
→𝑋1     

𝑑[𝑋4]

𝑑𝑡
  = - 𝜃̅ [𝑋1][ 𝑋4]    𝑟̅′ = −𝜃̅  𝑠̅.𝑟̅ 

10. 

 

  𝑋1 + 𝑋5
𝑞1̅̅ ̅
→ 𝑋5 + 𝑋5   

𝑑[𝑋1]

𝑑𝑡
 = - 𝑞1̅̅̅ [𝑋1][ 𝑋5], 

   
𝑑[𝑋5]

𝑑𝑡
  = 𝑞1̅̅̅ [𝑋1][ 𝑋5] 

 

 𝑠̅′ = − 𝑞1̅̅̅  𝑠̅.𝑝̅, 

   𝑝̅′ =  𝑞1̅̅̅ 𝑠̅.𝑝̅ 

11. 

 

𝑋1
𝑑1̅̅̅̅

→ 0                                                
𝑑[𝑋1]

𝑑𝑡
 = - 𝑑1̅̅ ̅ [𝑋1]  𝑠̅′ = − 𝑑1̅̅ ̅  𝑠̅ 

12. 

 

𝑋1
𝑚1̅̅ ̅̅̅
→ 0               

𝑑[𝑋1]

𝑑𝑡
 = - 𝑚1̅̅ ̅̅  [𝑋1] 

 

   𝑠̅′ = − 𝑚1̅̅ ̅̅   𝑠̅ 

13. 

 

   𝑋1 + 𝑋3
𝛽̅/2
→  𝑋2 + 𝑋2     

𝑑[𝑋1]

𝑑𝑡
 = − 

𝛽

2

̅
 [𝑋1][ 𝑋3], 

     
 𝑑[𝑋3]

𝑑𝑡
  = - 

𝛽

2

̅
 [𝑋1][ 𝑋3], 

   
𝑑[𝑋2]

𝑑𝑡
 =  𝛽̅ [𝑋1][ 𝑋3] 

 

   𝑠̅′ = −
𝛽

2

̅
  𝑠̅.𝑖,̅ 

     𝑖̅′ = −
𝛽

2

̅
  𝑠̅.𝑖,̅ 

   𝑒̅′ = 𝛽̅  𝑠̅.𝑖 ̅
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14. 𝑋2
𝑑2̅̅̅̅

→ 0 

 

 

 

    
𝑑[𝑋2]

𝑑𝑡
 = - 𝑑2̅̅ ̅ [𝑋2] 

 

    𝑒̅′ = − 𝑑2̅̅ ̅  𝑒̅ 

15. 

 

𝑋2
𝑚2̅̅ ̅̅̅
→ 0        

𝑑[𝑋2]

𝑑𝑡
 = - 𝑚2̅̅ ̅̅  [𝑋2]   𝑒̅′ = − 𝑚2̅̅ ̅̅   𝑒̅ 

16. 

 

𝑋2 + 𝑋5
𝑞2̅̅ ̅
→𝑋5 + 𝑋5    

𝑑[𝑋2]

𝑑𝑡
 = - 𝑞2̅̅ ̅ [𝑋2][ 𝑋5], 

   
𝑑[𝑋5]

𝑑𝑡
  = 𝑞2̅̅ ̅ [𝑋2][ 𝑋5] 

 

  𝑒̅′ =− 𝑞2̅̅ ̅  𝑒̅.𝑝̅, 

 𝑝̅′ = 𝑞2̅̅ ̅̅  𝑠̅.𝑝̅ 

17. 

 

𝑋2
𝜎̅
→ 𝑋3 

      
 𝑑[𝑋2]

𝑑𝑡
  = -  𝜎̅ [𝑋2], 

      
𝑑[𝑋3]

𝑑𝑡
 =   𝜎̅ [X2] 

 

𝑒̅′ = − 𝜎̅  𝑒̅, 
𝑖′̅ = 𝜎̅  𝑒̅ 

 

   18. 

 

𝑋3
𝑑3̅̅̅̅

→ 0 
𝑑[𝑋3]

𝑑𝑡
 = - 𝑑3̅̅ ̅ [𝑋3] 

 

𝑖′̅ = − 𝑑3̅̅ ̅  𝑖̅ 

19. 

 

𝑋3
𝑚3̅̅ ̅̅̅
→ 0       

𝑑[𝑋3]

𝑑𝑡
 = - 𝑚3̅̅ ̅̅  [𝑋3] 

 

 𝑖′̅ = − 𝑚3̅̅ ̅̅   𝑖̅ 

20. 

 

𝑋3 + 𝑋5
𝑞3̅̅ ̅
→ 𝑋5 + 𝑋5     

𝑑[𝑋3]

𝑑𝑡
 = - 𝑞3̅̅ ̅ [𝑋3][ 𝑋5],  

    
𝑑[𝑋5]

𝑑𝑡
  = 𝑞3̅̅ ̅ [𝑋3][ 𝑋5] 

𝑖′̅ = − 𝑞3̅̅ ̅  𝑖̅.𝑝̅, 

𝑝̅′ =  𝑞3̅̅ ̅̅  𝑖̅.𝑝̅ 

21. 

 

𝑋3
𝛾̅
→ 𝑋4        

𝑑[𝑋3]

𝑑𝑡
  = - 𝛾̅ [𝑋3], 

         
𝑑[𝑋4]

𝑑𝑡
 =   𝛾̅ [X3] 

 

  𝑖′̅ = − 𝛾̅  𝑖̅, 
  𝑟̅′  =  𝛾̅  𝑖̅ 

22. 

 

𝑋4 + 𝑋5
𝑞4̅̅ ̅
→ 𝑋5 + 𝑋5        

𝑑[𝑋4]

𝑑𝑡
 = - 𝑞4̅̅ ̅ [𝑋4][ 𝑋5],  

    
𝑑[𝑋5]

𝑑𝑡
  = 𝑞4̅̅ ̅ [𝑋4][ 𝑋5] 

 

𝑟̅′ = − 𝑞4̅̅ ̅  𝑟̅.𝑝̅, 

  𝑝̅′ = 𝑞4̅̅ ̅̅  𝑟̅.𝑝̅ 

23. 

 

𝑋4
𝑑4̅̅̅̅

→ 0  
𝑑[𝑋4]

𝑑𝑡
 = - 𝑑4̅̅ ̅ [𝑋4]  𝑟̅′ = − 𝑑4̅̅ ̅  𝑟̅ 

24. 

 

𝑋4
𝑚4̅̅ ̅̅̅
→ 0  

𝑑[𝑋4]

𝑑𝑡
 = - 𝑚4̅̅ ̅̅  [𝑋4]   𝑟̅′ = − 𝑚4̅̅ ̅̅   𝑟̅ 

25. 

 

𝑋5
𝑑5̅̅̅̅

→ 0  
𝑑[𝑋5]

𝑑𝑡
 = - 𝑑5̅̅ ̅ [𝑋5] 𝑝̅′ = − 𝑑5̅̅ ̅  𝑝̅ 

26. 

 

𝑋5
𝑚5̅̅ ̅̅̅
→ 0   

𝑑[𝑋5]

𝑑𝑡
 = - 𝑚5̅̅ ̅̅  [𝑋5] 𝑝̅′ = − 𝑚5̅̅ ̅̅   𝑝̅ 

27. 

 

𝑋3
𝑐̅
→ 0 

𝑑[𝑋3]

𝑑𝑡
 = - 𝑐̅ [𝑋3]  𝑖̅′ = − 𝑐̅  𝑖̅ 

28. 

 

𝑋4
𝜉̅
→ 𝑋1 

𝑑[𝑋4]

𝑑𝑡
  = - 𝜉̅ [𝑋4], 

  
𝑑[𝑋1]

𝑑𝑡
 =  𝜉̅ [X4] 

 

  𝑟̅′ = − 𝜉̅  𝑟̅, 
𝑠̅′  =   𝜉  𝑟 

 

 Let 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5 be the concentrations of the chemical species corresponding to the population of 

the animal species S(t), E(t), I(t), R(t) and P(t) given in models (7) and (8). The main goal in this subsection is to 
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determine the kinetic equation for each term on the right side of the given differential equation. After that for each 

kinetic equation it is important to determine the corresponding specific chemical reaction network. Using the law of 

mass action for each species in Table 2, we introduce the kinetic (rate) equations, the corresponding chemical 

reaction networks and the induced ordinary differential equations. The biological interpretation of these chemical 

reactions can be followed in Table 7 from Appendix B. 

 The predator-prey model with the presence of an epidemiological disease SEIR in the prey population is 

represented by the first 27 chemical equations given in Table 2. The model with a presence of a disease is described 

by the epidemiology SIERS model with all 28 reactions. 

 The total rate of the production of the chemical species 𝑋1, 𝑋2, 𝑋3 , 𝑋4 and 𝑋5 is obtained as a sum of the 

right-hand members of each reaction in which they participate. Thus, the differential system (9) given below is 

obtained. If we put the speed constants to be equal i.e. 𝑝 = 𝜙 = 𝑧 = 𝜃 = 𝑟/𝐾 , then the system (9) resembles 

system (7). If the rate constants in the chemical reactions 3, 4, 5, 6, 7, 8, 9 and 13 are different, then some new 

additional terms in each differential equation will appear, i.e., idX

dt
for 1,5.i    

 

1 1 2 3 4 1 3 1 1 5 1 1 1 1 4

2
1 3 2 2 5 2 2 2 2 2

3
2 3 3 3 5 3 3 3 3 3

4
3 4 4

[ ]
[ ][r ( [ ] [ ] [ ] [ ])] [ ][ ] [ ][ ] [ ] [ ] [ ]

[ ]
[ ][ ] [ ][ ] [ ] [ ] [ ]

[ ]
[ ] [ ] [ ][ ] [ ] [ ] [ ]

[ ]
[ ] q [ ]

1d X
X X X z X X X X q X X d X m X X

dt

d X
X X q X X X d X m X

dt

d X
X X q X X d X m X c X

dt

d X
X X

dt

    

 

 



         

    

     

  5 4 4 4 4 4

5
1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 5

[ ] [ ] [ ] [ ]

[ ]
[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ] [ ]

X d X m X X

d X
q X X q X X q X X q X X d X m X

dt

  

     

  (9) 

 

with initial data 0

1 1(0) 0,X X  0

2 2(0) 0,X X 
0

3 3(0) 0,X X  0

4 4(0) 0,X X 
0

5 5(0) 0.X X    

  

If we want to obtain the dimensionless model (8), then the rate constants r, p, z, θ, φ in the differential 

system (9) must be equal to one. Thus, we can obtain the ordinary differential system (10) which describes the 

change in the concentrations of the chemical species 𝑋1, 𝑋2, 𝑋3 , 𝑋4 and 𝑋5 corresponding to the non-dimensional 

system (8) of the considered predator-prey model with the presence of an epidemiological disease SEIR or SEIRS in 

the prey population. 

 

  

 1
1 1 2 3 4 1 3 1 1 3 1 1 1 1 4

2
1 3 2 2 5 2 2 2 2 2

3
2 3 3 3 5 3 3 3 3 3

4
3 4 4 5

[ ]
[ ][1 [ ] [ ] [ ] [ ] ] [ ][ ] q [ ][ ] [ ] m [ ] [ ]

[ ]
[ ][ ] q [ ][ ] [ ] [ ] [ ]

[ ]
[ ] [ ] [ ][ ] [ ] [ ] [ ]

[ ]
[ ] q [ ][ ]

d X
X X X X X X X X X d X X X

dt

d X
X X X X X d X m X

dt

d X
X X q X X d X m X c X

dt

d X
X X X d

dt

 

 

 



         

    

     

   4 4 4 4 4

5
1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 5

[ ] m [ ] [ ]

[ ]
[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ] [ ]

X X X

d X
q X X q X X q X X q X X d X m X

dt

 

     

(10) 

with initial data  𝑋1(0) = 𝑋1
0 ≥ 0,  𝑋2(0) = 𝑋2

0 ≥ 0,  𝑋3(0) = 𝑋3
0 ≥ 0,  𝑋4(0) = 𝑋4

0 ≥ 0,  𝑋5(0) = 𝑋5
0 ≥ 0. 

 

NUMERICAL EXPERIMENTS 

 In this section we give three numerical experiments which are carried out using the online platform 

SmoWeb when the Biochemical Reactions application is selected [17]. This application has three directories: (1) 

Reactions, (2) Species and (3) Settings. For each directory the user can enter the following necessary data: 

(1) Reaction - the chemical reactions and the numerical value of the rate constants are entered by the user. The 

rate constant in the given chemical reaction is measured in 1 mol/l under some standard conditions. 
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(2) Species – the initial numerical values of the chemical species in the measurement unit which is chosen by the 

user.  

(3) Settings – the user enters a pair of chemical substances, simulation time and printing interval so that the 

phase portrait can be drawn. 

TABLE 3: Case 1 (unstable case): Numerical values of the rate constants given in chemical reactions for system (10) 

𝒓̅ 𝜷̅ 𝒒𝟏̅̅ ̅ 𝒒𝟐̅̅ ̅ 𝒒𝟑̅̅ ̅ 𝒒𝟒̅̅ ̅ 𝒅𝟏̅̅̅̅  𝒅𝟐̅̅̅̅  𝒅𝟑̅̅̅̅  𝒅𝟒̅̅̅̅  

1     25 1.25 3.75 12.50 1.25 0.10  0.0875 0.05   0.0375 

𝒅𝟓̅̅̅̅  𝒎𝟏̅̅ ̅̅  𝒎𝟐̅̅ ̅̅  𝒎𝟑̅̅ ̅̅  𝒎𝟒̅̅ ̅̅  𝒎𝟓̅̅ ̅̅  𝒄̅ 𝝈̅ 𝜸̅ 𝝃̅ 

   0.075    0.50   0.125   0.0625   0.1875   0.3125     0.20   0.625    0.3125   0.025 

 

TABLE 4: Case 2 (stable case) Numerical values of the rate constants given in chemical reactions for system (10) 

 

𝒓̅ 𝜷̅ 𝒒𝟏̅̅ ̅ 𝒒𝟐̅̅ ̅ 𝒒𝟑̅̅ ̅ 𝒒𝟒̅̅ ̅ 𝒅𝟏̅̅̅̅  𝒅𝟐̅̅̅̅  𝒅𝟑̅̅̅̅  𝒅𝟒̅̅̅̅  

1     25    1.25    3.75   12.50 1.25   0.0375    0.05  0.0625  0.0375 

𝒅𝟓̅̅̅̅  𝒎𝟏̅̅ ̅̅  𝒎𝟐̅̅ ̅̅  𝒎𝟑̅̅ ̅̅  𝒎𝟒̅̅ ̅̅  𝒎𝟓̅̅ ̅̅  𝒄̅ 𝝈̅ 𝜸̅ 𝝃̅ 

   0.075    0.25    0.125   0.0625   0.1875    0.25    0.25    0.50  0.375  0.025 

 
TABLE 5: Case 3 (unstable case) Numerical values of the rate constants given in chemical reactions for system (10) 

 

𝒓̅ 𝜷̅  𝒒𝟏̅̅ ̅ 𝒒𝟐̅̅ ̅ 𝒒𝟑̅̅ ̅ 𝒒𝟒̅̅ ̅ 𝒅𝟏̅̅̅̅  𝒅𝟐̅̅̅̅  𝒅𝟑̅̅̅̅  𝒅𝟒̅̅̅̅  

 1     25   12.50      25 75    12.50   0.0375     0.05    0.05  0.0375 

𝒅𝟓̅̅̅̅  𝒎𝟏̅̅ ̅̅  𝒎𝟐̅̅ ̅̅  𝒎𝟑̅̅ ̅̅  𝒎𝟒̅̅ ̅̅  𝒎𝟓̅̅ ̅̅  𝒄̅ 𝝈̅ 𝜸̅ 𝝃̅ 

    0.05   0.625   0.375   0.125     0.50    0.625   0.1875    0.375   0.4375   0.025 

 

In Figure 2 we introduce three graphics of the variations of the concentrations of five chemical species where the 

numerical values of the rate constants are given in Tables 3, 4, and 5. It is important to say that the numerical value 

of the constant ζ in the predator-prey model in the presence of an epidemiological disease SEIRS does not change 

the graphic, which is obtained for the model with a SEIR disease. The initial data that we use for the three 

experiments are:  𝑋1(0) = 0.40m/l,  𝑋2(0) = 0.15m/l,  𝑋3(0) = 0.05m/l,  𝑋4(0) = 0m/l и 𝑋5(0) = 0.15m/l. 

 
(a)     (b) 
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(c) 

 
FIGURE 2: Graphs of the variation of the concentrations of the five chemical species with time variation for the following 

experiments: (a) first - Table 3, (b) second - Table 4 and (c) third - Table 5 

 

The graphics presented in Figure 2 show that the numerical values which are used in cases (a) and (c) of the given 

system predict an unstable state. Of particular note is the presence of some oscillations in the graphics which 

resemble the oscillations of the basic predator-prey model. On this base we can see the existence of a parallel 

between the eco-epidemiological models and the chemical reaction networks constructed for them. In the case (b) 

after 𝑡30 the system goes to an equilibrium state. 

 Two other functionalities that the online platform SmoWeb provides are as follows: 

(1) A collection of tables that shows the concentration of the chemical species changes in time, see Figure 3. 

(2) Phase portrait of the pair of the chemical species that can be used to trace how these two chemicals interact 

with each other in time, see Figures 4 and 5. 

                 
FIGURE 3: Some screenshots of the collection of tables  

 
(a)      (b)      (c) 

FIGURE 4: Phase portraits of the chemical species 𝑋1, 𝑋2 for the three experiments: (a) first - Table 3, (b) second - Table 4 

and (c) third - Table 5 
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FIGURE 5: Phase portraits of the chemical species 𝑋3, 𝑋5 for the three experiments: (a) first - Table 3, (b) second - Table 4 and 

(c) third - Table 5 

 

Since the real system, unlike the deterministic models, tends to be a subject of a random background noise so the 

unstable steady-state solution is unlikely to be observed in practice. Instead of this, some stable oscillations or some 

other types of attractors may appear. Such attractors can be seen in Figures 4 and 5. The phase portrait of the 

chemical species  𝑋1,  𝑋2 in case (a) from Figure 4 shows the decreasing of the species  𝑋1 while the species  𝑋2  
increases in time. In case (b) from Figure 4 the same trend is initially observed -  𝑋1 decreases and  𝑋2  increases in 

time. The concentration of both species decreases until the species 𝑋2  almost disappears. In case (c) from Figure 4 it 

is seen that the concentration of both species decreases in time. In Figure 5 the phase portrait of the chemical species 

𝑋3, 𝑋5 in case (a) shows how the concentration of the species  𝑋3 decreases while the concentration of 𝑋5 increases 

in time 𝑡𝑀. After that the concentration of both substances decrease. In case (b) from Figure 5 a rapid increase is 

seen in the concentration of the species 𝑋5 while the species 𝑋3 decreases. We find the same trend in case (c) from 

Figure 5 but after time  𝑡𝑁 a sharp decrease in the concentration of both species is observed. 

CONCLUSION 

 Using the theory of chemical reaction networks, we can easily analyze the relationships between some 

different processes like growth/decay, migration, transmission of infection, loss of immunity, etc. In this work a 

predator-prey model with the SEIR and the SEIRS epidemic was introduced in the prey. The inverse method was 

applied to construct the chemical reaction network using the presented eco-epidemical models. The law of mass 

action was used to create links between the chemical reactions (equations) and the given system of ordinary 

differential equations. The numerical experiments which are carried out through the online platform SmoWeb show 

that if we use the same initial concentrations of the chemical species but use different rate constants, it will lead to a 

reaction network which can be in an unstable or a stable state. The presented phase portraits show how the two 

concentrations interact with each other in time. The obtained results give a relationship between the interaction of 

the pair of chemical concentrations and the dynamics of separate pairs of populations corresponding to the animal 

species described in the epidemiological models. 
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APPENDIX A 

TABLE 6: The kinetic equations and their chemical interpretation 

 

No Kinetic equations 
Chemical interpretation of the kinetic equations 
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1. 

[ ]d P
kPS

dt
  

[ ]d S
kPS

dt
   

 

In this “logistic” reaction the species P acts as a 

catalyst because it accelerates its own production. 

This type of catalysis is called an autocatalysis. 

2. 

[ ]d P
P

dt
   

[ ]d S
P

dt
  

 

This reaction causes an exponential decay of the 

species P and an exponential growth for the species 

S. 

3. 

[ ]d I
SI

dt
  

  [ ]d S
SI

dt
   

 

In this “logistic” reaction, species I is the catalyst 

because it accelerates its own production. This type 

of catalysis is called an autocatalysis. 

4. 

[ ]d I
I

dt
   

[ ]d S
I

dt
  

 

This reaction causes an exponential decay of the 

species I and an exponential growth for the species 

S. 

 

APPENDIX B 

TABLE 7: The chemical equations and their biological interpretation 

No Chemical equations Biological interpretation of the chemical equations 

1. 𝑋1
𝑟̅
→𝑋1 + 𝑋1 

 

In the absence of infection, the number of susceptible increases depending on 

the birth rate. 

2. 
𝑋1 + 𝑋1

𝑝̅
→ 𝑋1 

 

For a time period t, the number of susceptible decreases twice with rate 𝑝̅. 

3. 

 

𝑋1 + 𝑋2
𝜙̅
→𝑋2 + 𝑋2 

 

In contact between susceptible and exposed to the disease, the number of 

exposed doubles. 

 

4. 

 

𝑋1 + 𝑋2
𝜙̅
→ 𝑋1 

 

In contact between susceptible and exposed to the disease are likely to remain 

susceptible. 

 

5. 

 

𝑋1 + 𝑋3
𝑧̅
→ 𝑋1 

 

In contact between susceptible and infected, remain susceptible, provided that 

the infected have died. 

 

6. 

 

𝑋1 + 𝑋3
𝑧̅
→𝑋3 + 𝑋3 

 

In contact between susceptible and infected, the number of infected doubles. 

 

7. 

 

𝑋1 + 𝑋3
𝛽̅/2
→  𝑋3 + 𝑋3 

 

In contact between susceptible and infected, the number of infected doubles. 

 

8. 

 

𝑋1 + 𝑋4
𝜃̅
→𝑋4 + 𝑋4 

In contact between susceptible and recovered, the number of recovered doubles 

if it is assumed that the susceptible are not infected and they are considered to 

be healthy. 
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9. 

 

𝑋1 + 𝑋4
𝜃̅
→ 𝑋1 

In contact between susceptible and recovered, the number of recovered occurs 

susceptible species, if it is assumed that the recovered species has migrated or 

died. 

 

10. 

 

𝑋1 + 𝑋5
𝑞1̅̅ ̅
→𝑋5 + 𝑋5 

In contact between susceptible prey and a predator, the number of predator 

increases. 

 

11. 

 

𝑋1
𝑑1̅̅̅̅

→ 0 
Natural mortality in susceptible prey. 

12. 

 

𝑋1
𝑚1̅̅ ̅̅̅
→ 0 

Migration process for susceptible prey. In this way their number is reduced. 

13. 

 
𝑋1 + 𝑋3

𝛽̅

2
→𝑋2 + 𝑋2 

 

In contact between susceptible and infected species at a rate  
𝛽̅

2
, the number of 

exposed species to the infection gets double. 

 

14. 

 

𝑋2
𝑑2̅̅̅̅

→ 0 
Natural mortality in exposed prey. 

15. 

 

𝑋2
𝑚2̅̅ ̅̅̅
→ 0 

Migration process for exposed prey. In this way their number is reduced. 

16. 

 

𝑋2 + 𝑋5
𝑞2̅̅ ̅
→𝑋5 + 𝑋5 

In contact between exposed prey and a predator, the number of predators 

increases. 

17. 

 

𝑋2
𝜎̅
→𝑋3 

The exposed prey becomes infected at the rate of incubation 𝜎.̅ 
 

18. 

 

𝑋3
𝑑3̅̅̅̅

→ 0 
Natural mortality in infected prey. 

19. 

 

𝑋3
𝑚3̅̅ ̅̅̅
→ 0 

Migration process for infected prey. In this way their number is reduced. 

20. 

 

𝑋3 + 𝑋5
𝑞3̅̅ ̅
→𝑋5 + 𝑋5 

When infected prey come in contact with a predator, the number of predators 

increases. 

21. 

 

𝑋3
𝛾̅
→𝑋4 

Infected species heal at a speed of recovery 𝛾.̅ 

22. 

 

𝑋4 + 𝑋5
𝑞4̅̅ ̅
→𝑋5 + 𝑋5 

In contact between recovered prey and predators, the number of predators 

increases. 

23. 

 

𝑋4
𝑑4̅̅̅̅

→ 0 
Natural mortality in recovered prey. 

 

24. 

 

𝑋4
𝑚4̅̅ ̅̅̅
→ 0 

Migration process for recovered prey. In this way their number is reduced. 

 

25. 

 

𝑋5
𝑑5̅̅̅̅

→ 0 
Natural mortality in predator. 
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26. 

 

𝑋5
𝑚5̅̅ ̅̅̅
→ 0 

Migration process for predator. In this way their number is reduced. 

27. 

 

𝑋3
𝑐̅
→ 0 

Mortality in infected prey caused by the disease. 

28. 

 

𝑋4
𝜉̅
→ 𝑋1 

Recovered prey become susceptible to infection at a rapid rate 𝜉.̅ 
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