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Abstract. In the present paper three different in their structure fam-
ilies, of exact periodic solutions of the nonlinear evolution equation of
Nikolaevskii, have been obtained. The common dynamic structure of
these families of periodic solutions has been shown as well as the spatial
displacements, typical of the non-integrable evolution equations, for each
separate harmonics. These exact solutions are published for the first time.
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1. Introduction

Experimental studies show that the earth’s crust is elastically nonlin-
ear and contains the sources of accumulated elastic energy. This dissipative
medium generates seismic emissions of low and high frequency range. Beres-
nev and Nikolaevskii [1], [2] proposed the following evolutionary non-integrable
equation to describe seismic waves in a viscoelastic medium:

(1) ut + [βu− (u+ 2uuxx + uxxxx)]xx + uux = 0,

where u(x, t) ∈ C6(Ω) characterizes the elevation of the earth’s crust, and β is
a small positive parameter controlling the distance from a certain origin. The
model does not allow β to be reduced to zero. By Ω we have denoted the semi-
infinite two-dimensional stripe Ω = {(x, t) ∈ R

2, 0 ≤ x ≤ L, t > 0}. Equation
(1) could be also interpreted as a generalization of Burgers equation [3]. Let us
mention the fact that it is invariant with respect to the Galilean transformation,
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i.e. if U(x, t) is a solution of (1), then the function u(t, x) = u0 +U(t, x−u0t),
where u0 = const, is also a solution of equation (1).

The numerical analysis of the evolution equation (1) performed in [1],
[2] shows the evolution of quasi-sinusoidal, stationary groups of waves. The
authors of [3] have also established numerically that equation (1) has a threshold
of short-wave instability under the dynamics of slow long waves. So, contrary
to the conventional scenarios, turbulence arises out of a spatially homogeneous
condition as a result of only one supercritical bifurcation.

Authors mentioned Hao-wen Xi, R. Toral, J. Gunton, M. Tribelsky
[3] use the evolution equation (1) like the simplest possible model of an ex-
tensive spatio-temporal chaos. Spatio-temporal chaos is observed in a wide
range of models of dissipative systems and can be interpreted as a macroscopic
dynamic analog of a phase transition of second kind, usually called weak tur-
bulence. Equation (1) has been studied mostly numerically [3], [4], [5], [6] and
Kudryashov [7] has found an exact elliptic solution.

The focus of the present paper is to obtain exact periodic solutions of
the evolution equation (1) in a closed analytic form. For convenience in further
analysis, the equation will be represented in the form:

(2) ut + uux = λuxx + 2uxxxx + uxxxxxx,

where λ = 1 − β. In its classic form, the bilinear transformation method of
Hirota-Matsuno [8] is not applicable because equation (2) is non-integrable.
Hence, we have used a “spatial” modification of this classic method that allows
overcoming the serious mathematical problems ensuing from the Nikolaevskii
equation [8], [9], [10]. There are also other mathematical models [15], [16],
[17] applied successfully in modelling of seismic and hydrodynamic processes in
dispersive medium.

2. Periodic solution

We will look for a periodic solution of equation (2) in the two-dimensional
space Ω assuming that it is equipped with a “strong topology”, i.e. if u(x, t) ∈
C(Ω) is a localized solution of equation (2), then ut, ux, uxx, uxxxx, uxxxxxx are
also continuously differentiable functions on the two-dimensional stripe Ω. Let
us represent the solution of (2), applying the Hirota-Satsuma transformation
[11]:

(3) u(x, t) = a+ µ(ln ζ(x, t))xx,

where a, µ are unknown parameters for the time being (possibly complex as
well), while ζ(x, t) is an unknown periodic function of the class C8(Ω). If we
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substitute u(x, t) from (3) into equation (2) and employ the expressions for the
logarithmic derivatives through the Hirota bilinear operator [12] (See Appendix
A), by a single integration over x, we will obtain the following bilinear form of
equation (2):

(4)

1

2ζ2
(DtDx + 2aD2

x − 8B)ζ.ζ +
1

2

(

D2
xζ.ζ

2ζ2

)[

µ

(

D2
xζ.ζ

2ζ2

)

− 2a

]

=
∂

∂x

{

1

2ζ2

[

(a+ λ)D2
x + 2D4

x +D6
x − 8C

]

ζ.ζ

+

(

D2
xζ.ζ

2ζ2

)

[

120

(

D2
xζ.ζ

2ζ2

)2

− 30

(

D4
xζ.ζ

2ζ2

)

− 12

(

D2
xζ.ζ

2ζ2

)

− a

]}

,

where, for convenience, we have denoted by B:

(5) B =
1

8µ

(

B0 −
a2

2

)

,

and B0 is an integration constant, while C is a constant. By Dn
x , n = 1, 2, . . .

we have denoted the Hirota bi-differential operator [12], defined by the equality:

Dm
t D

n
xϕ(x, t) . ψ(x′, t′)

=
(

∂/∂t− ∂/∂t′
)m (

∂/∂x− ∂/∂x′
)n
ϕ(x, t)ψ(x′, t′)

∣

∣

∣

∣

∣

∣

x=x′

t=t′

, m, n ∈ N.

The bilinear equation (4) can be represented as a conjunction of the
following four equations:

(DtDx + 2aD2
x − 8B)ζ.ζ = 0,(6)

µD2
xζ.ζ − 4aζ2 = 0,(7)

[(a+ λ)D2
x + 2D4

x +D6
x − 8C]ζ.ζ = 0,(8)

30(D2
xζ.ζ)

2 − 15ζ2(D4
xζ.ζ) − 6ζ2(D2

xζ.ζ) = aζ4.(9)

Let us clarify that the equations generated by the bilinear analogue of the initial
equation are usually called residual. Their great number in this particular case
is explained by the high degree of singularity (σ = 5) of equation (2), but
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the problem here follows from their structural inhomogeneity. The structure
of equations (7) and (9) is quite different with its nonlinear bilinearities, while
the left sides of equations (6) and (8) have the structureF (Dt,Dx), where F
is a polynomial of two variables. As will be seen further, this circumstance is
causing the major mathematical difficulties, however they can be overcome.

A sufficiently smooth function ζ(x, t) would be a localized solution of
equation (2) provided it satisfies all residual solutions for certain values of the
parameters a, µ, B, C having µ 6= 0, for reasons of non-triviality of the solution
u(x, t). Let us assume that ζ(x, t) is expressed by the fourth1 θ-function of
Jacobi [13]:

(10) ζ(x, t) = θ4(ξ, q) =

∞
∑

n=−∞

(−1)nqn2

e2inξ,

where ξ = kx+ωt+ δ is the phase variable, k, ω, δ, k 6= 0, ω 6= 0 are unknown
at this stage parameters (possibly complex as well). The function θ4(ξ, q) is
well-defined if the perturbation parameter q = eiπτ (Im τ > 0) is such that:

(11) 0 < |q| < 1.

All θ-functions are biperiodic, and θ4(ξ, q) in particular has a real period
π (by ξ) and an imaginary period 2 (by q). If we substitute ζ(x, t) from (10)
in the first residual equation (6), we will obtain the following infinite chain of
algebraic equations:

(12)

∞
∑

m=−∞

F (m)(−1)m e2imξ = 0,

where F (m) =
∞
∑

n=−∞

[−(4kω + 2ak2)(2n−m)2 − 8B]qn2+(n−1)2 .

At first glance, this infinite system is incompatible as there are only
five unknowns, but the polynomial structure of equation (6) allows applying
the principle of index parity to the system (12). This means that if for a fixed
m ∈ Z we perform a finite number of reductions n → n + 1, we will get the
chain identities:

F (m) = F (m− 2)q2(m−1) = F (m− 4)q2(2m−4) = · · ·
1
It is often accepted that θ4(ξ, q) = θ0(ξ, q).
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=

{

F (0)qm2/2, if m is an even number;

F (1)q(m
2
−1)/2, if m is an odd number.

If in (12) we sum separately the even and odd addends, the following
compact form will be obtained:

F (0)θ3(2ξ, q
2) − q1/2F (1)θ2(2ξ, q

2) = 0,

where θ2(ξ, q), θ3(ξ, q) are the second and third θ-functions of Jacoby, respec-
tively [13], i.e.:

θ2(ξ, q) =

∞
∑

n=−∞

q(n−1/2)2ei(2n−1)ξ ; θ3(ξ, q) =

∞
∑

n=−∞

qn2

e2inξ.

The two simple equations F (0) = 0, F (1) = 1 are result from the last
equation (in view of the linear independence of θ2(2ξ, q

2) and θ3(2ξ, q
2)). By

means of the bilinear identities (See Appendix B), the last two equations can
be transformed into the following simple linear non-homogeneous system:

(13)
kqθ′3ω + θ3B = −2aqk2θ′3

kqθ′2ω + θ2B = −2aqk2θ′2
,

where θs = θs(0, q
2), s = 2, 3, and the symbol ′ denotes the derivative with

respect to the parameter q. The system (13) has a unique solution:

(14) ω = −2ka, B = 0, and considering (5), we will have B0 = a2/2.

At this stage it is evident that the phase velocity ω and the integration
constant B0 would be known, if a was known.

Let us consider equation (9). This equation does not possess the nice
polynomial bilinearity of equation (6). We will obtain a chain of infinite number
of equations (from the coefficients in front of e2imξ , m = 0,±1,±2, . . . ) with
one unknown – the parameter a, if we substitute ζ(x, t) from (10) directly into
equation (9). Hence, we will represent a in the formal series:

(15) a = 24

∞
∑

m=−∞

am,

where am depends possibly on q. Applying Cauchy’s formula for the product
of two series:

(

∞
∑

s=−∞

As

)(

∞
∑

ν=−∞

Bν

)

=

∞
∑

m,n=−∞

AmBn−m,
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for the terms of equation (9), we will get the following compatible algebraic
system:

(16)

am

∞
∑

n=−∞

q6n2
−16mn+10m2

= 10k4
∞
∑

n=−∞

[2m2(2n − 3m)2 − (2n−m)4]q6n2
−4mn

+ k2
∞
∑

n=−∞

(2n−m)2q6n2
−4mn, m = 0,±1,±2, . . .

By accounting for

∞
∑

n=−∞

q6n2
−16mn+10m2

= θ3(πτ(5m
2 − 2mn), q6) and

introducing for convenience, the denotations:

(17)

a0(q) =

∞
∑

m,n=−∞

[2m2(2n− 3m)2 − (2n −m)4]e−4iπmnτ

θ3(πτ(5m2 − 2mn), q3)
q6n2

,

a1(q) =

∞
∑

m,n=−∞

(2n −m)2e−4iπmnτ

θ3(πτ(5m2 − 2mn), q3)
q6n2

,

we can represent equality (16) in the compact form (taking into account (15)):

(18) a = 24[10k4a0(q) + k2a1(q)].

We have to note that under the condition of hypothesis (11) both infinite
series a0(q) and a1(q) defined in (17) are absolutely convergent, i.e. these
functions are well-defined.

Now, let us analyze the residual equation (8) where the two unknown
parameters are a and C. Taking into account that this equation has a polyno-
mial bilinearity, and applying the index parity principle (See equation (6)), we
will obtain the linear non-homogeneous system:

(19)







q(a+ λ)θ′3 + Cθ3/k
2 = −64qk4(θ′3 + 3qθ′′3 + q2θ′′′3 ) + 16qk2(θ′3 + qθ′′3)

q(a+ λ)θ′2 + Cθ2/k
2 = −64qk4(θ′2 + 3qθ′′2 + q2θ′′′2 ) + 16qk2(θ′2 + qθ′′2)

The system (19) has a unique solution, since its determinant ∆ is:

∆ = qW (θ2, θ3)/k
2 6= 0,
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where by W (θ2, θ3) we have denoted the Wronskian from θ2 = θ2(0, q
2) and

θ3 = θ3(0, q
2), i.e. W (θ2, θ3) = θ2θ

′

3 − θ′2θ3. These solutions are (See Appendix
B):

a = 16k2W0(q) − 64k4W1(q) − λ,(20)

C = − 16q2k4

W (θ2, θ3)

[

(12k2 + 1) W (θ′2, θ
′

3) + k2qW ′ (θ′2, θ
′

3)
]

,(21)

where for convenience by W0(q)and W1(q) we have denoted the expressions:

W0(q) = 1 +
W ′(θ2, θ3)

W (θ2, θ3)
; W1(q) = 3W0(q) + q2

θ2θ
′′′

3 − θ3θ
′′′

2

W (θ2, θ3)
− 2.

By comparing the right sides of the equations (18) and (20) we derive
the characteristic equation for the wave number k:

(22) k2 =
W0(q) − 3a1(q)/2 ±

√

[W0(q) − 3a1(q)/2]2 − λ[W1(q) + 15a0(q)/4]

8W1(q) + 30a0(q)
,

which shows that it is functionally tied with the perturbation parameter q. All
parameters found so far like a, ω, B0, C, which depend on the wave number k,
will be associated with the characteristic equation (22).

The last residual equation of the system (6)–(9) is equation (7). If we
assume that the non-zero free parameter µ possesses the structure:

(23) µ =
∞
∑

m=−∞

µm,

and taking into account (18) and (22), then (7) is reduced to the infinite chain
of simple algebraic equations for µm, i.e.:

− µmk
2

∞
∑

n=−∞

(2n− 3m)2q2n2
−6mn+5m2

= am(q)

∞
∑

n=−∞

q2n2
−6mn+5m2

,

m = 0,±1,±2, . . .

We get from the last equality:

(24) µm = −am(q)a2(m, q)

k2a3(m, q)
, m = 0,±1,±2, . . . ,

where by aj(m, q), j = 2, 3 we have denoted the sums of the absolutely conver-
gent series (according to hypothesis (11)):
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(25) a2(m, q) =

∞
∑

n=−∞

q2n2
−6mn+5m2

;

a3(m, q) =

∞
∑

n=−∞

(2n − 3m)2q2n2
−6mn+5m2

, m = 0,±1,±2, . . .

Finally, we can already make the conclusion that the evolution equation
of Nikolaevskii (2) generates a localized periodic solution in the two-dimensional
semi-infinite stripe Ω, having the structure:

(26) u(x, t) =
∞
∑

m=−∞

{

am(q) + k2µm(q)
∂

∂ξ

[ .
θ4(ξ, q)

θ4(ξ, q)

] }

,

where by
.
θ4 we have denoted the derivative of theta 4 with respect to the phase

variable ξ. The spatial displacements am(q), m = 0,±1,±2, . . . are defined by
equalities (16) and (17), while µm(q) are defined by (24). The phase frequency
ω and the wave number k are defined, correspondingly by (14) and (22), and the
integration constant B0 and differential constant C are the same as in equalities
(14) and (21), respectively.

3. Real periodic solutions and analyticity conditions

The values of the meromorphic function u(x, t) from (26) are complex
in the general case. This inconvenience is further intensified by the twofold
poles of this solution at the zero points of the function θ4(ξ, q), i.e. in the
lattice ξmn = m+ i(n+ 1/2)Im(τ), m,n ∈ Z.

In order to increase the practical applicability of the periodic solution
(26), it is necessary to choose the free parameters q, δ (|q| ∈ (0, 1)) in such a
way that the solution u(x, t) from (26) to have real values and would not have
any singularities. For this purpose, let:

(27) τ = iε, where ε > 0 (ε ∈ R), i.e. 0 < q = −πε < 1.

In this way, the perturbation parameter q accepts real values within the
interval (0, 1). If we restrict the phase variable within the horizontal stripe:

(28) −πε < Im(ξ) < πε,

we will “avoid” the singularities for the function u(x, t) from (26). Moreover,
this horizontal stripe is also a domain of analyticity for the periodic solution
u(x, t). Let the parameter α > 0 be chosen so that the characteristic equation
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(22) defines k2 > 0, i.e. k > 0. In view of (17), a(q) is also a real number,
and hence it follows that ξ = kx + ωt + δ will accept real or complex values
depending on the phase shift δ. Let δ ∈ R, and then the analyticity condition
(28) will be fulfilled and if we take advantage of the formula for the second
logarithmic derivative (See Appendix B), i.e.:

∂2

∂x2
[ln θ4(ξ, q)] = k2α2

0cn
2(ξ0, β0) − b(ε)k2,

where: ξ = kx+ ωt+ δ; ξ0 = πθ2
3(0, q)(kx + ωt+ δ); α2

0 = π2θ4
2(0, q);

β0 = θ2
2(0, q)/θ

2
3(0, q); q =−πε; b(ε) =

1

3π2θ4
2(0, q)

[

θ4
2(0, q)

θ4
3(0, q)

− θ′′′1 (0, q)

θ′1(0, q)
− 1

]

,

then we can obtain the following periodic-cnoidal solution of equation (2), based
on (26):

(29) u(x, t) =
∞
∑

m=−∞

um(ε)

[

1 + k2b(ε)
a2(m, ε)

a3(m, ε)

]

− α2
0k

2
∞
∑

m=−∞

am(ε)a2(m, ε)

a3(m, ε)
cn2(ξ0, β0).

Taking into account the absolute convergence of the infinite series in
formula (29) (for ε > 0), we can derive the conclusion, that the obtained real
one-parametric family of periodic-cnoidal waves of equation (2) is an aggregate
of dispersive waves with group velocities: V (ε) = 512k3W1(ε)−96k2W0(ε)+2λ
(ε > 0) and lengths σ(ε) = 4K1/kπθ

2
3(0, ε). Obviously, for a real wave number

k, defined by means of (22), these dispersive waves with phase velocities:

V0(ε) = ω/k = −2a(ε) = 128k4W1(ε) − 32k2W0(ε) + 2λ,

will form non-dissipative waves. Such non-dissipative waves are related to grad-
ual fading of the amplitudes of the separate harmonics with time. In the case
of ω being an imaginary number, these periodic waves are dissipative.

When ε → 0, i.e. q → 1, the general solution (29) is characterized by
the small amplitude mode, where we can employ the Fourier expansion of the
logarithmic derivative (See [13]):

θ′4(ξ, e
−επ)

θ4(ξ, e−επ)
= 2

∞
∑

m=−∞

cos ech(επm) sin(2mξ),
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by means of which we can represent the complex solution (29) in the form:

(30) u(x, t) =
∞
∑

m=−∞

am(ε)

[

1 − 4m
a2(m, ε)

a3(m, ε)
cos ech(επm) cos(2mξ)

]

.

The obtained localized solution (30) is a superposition of a one-paramet-
ric family (with parameter ε > 0) of cosinusoidal waves, where each harmonic
(for a fixed m) has a separate spatial displacement am(ε) and a separate am-
plitude. In view of the condition k ∈ R, which without any limitations is
considered to be a positive number, i.e. k > 0. The last inequality, as well as
(22), means that the positive parameter ε should be such that:

(31) [W0(ε) − 3a1(ε)/2]2 ≥ λ [W1(ε) + 15a0(ε)/4] .

Due to its slow convergence, the periodic cosinusoidal solution (30),
taking into account the conditions (28) and (31), is practically invalid in the
strongly non-linear zones, i.e. for ε → ∞, i.e. q → 0. We will perform a
transformation of first degree for the function θ4(ξ, q), to carry out a smooth
boundary transition from ε → 0 to ε → ∞. For this purpose, we will define
a new perturbation parameter q1, such that q1 = eiπτ1 = e−π/ε, i.e. τ1 =
−1/τ or τ1 = i/ε. Thus, the boundary transition q → 1 is equivalent to
the transition q1 → 0, and the transformation of first degree will be: θ4(ξ, q) =

(−iτ1)1/2eiτ1 ξ2/πθ1(τ1ξ, q1) (See [13]). After applying the formula for the second
logarithmic derivative (See Appendix C):

d2

dz2
[ln θ2(z, q)] = −

∞
∑

m=−∞

sech2[i(z −mπτ)],

and the convenient rescaling: k → εk; ω → εω; δ → εδ; ξ → εξ, we will obtain
the so-called solitary-wave form of the localized solution:

(32) u(x, t) =
∞
∑

m=−∞

[am (ε) − 2k2µm(ε)
]

+ k2µ
∞
∑

m=−∞

sec h2
(

ξ − mπ

ε

)

.

The solution (32) is a one parameter2 family of solitary-wave pro-
files of the type sec h2, having lengths 2π/kε and crests at the points ξm =
0,±2π/ε,±4π/ε, . . . ,±2πm/ε, . . . , m ∈ N. In the zones of strong non-linearity

2
Formally, this is a two parameter family ε > 0, δ ∈ C, but the phase shift δ is a passive

parameter.
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ε → 0, due to the increasing lengths of the sinusoidal waves (30), a process of
localization of the wave forms is initiated. In contrast to the integrable and
semi-integrable models of nonlinear partial differential equations, they pos-
sess in the solitary-wave packages of the sec h2 type individual and strictly
defined spatial displacements for each separate harmonics. In this case they
are: am(ε) − 2k2µm(ε) for a fixed m ∈ Z.

Fig. 1. Region of small amplitudes: q = 0, 1; k = 1/2. The lower graph shows the
surface elevation without spatial displacements. The above graph shows the elevation

with spatial displacements

Fig. 2. The elevation for ε → ∞(q → 1). The solitary – wave forms on the lower
graph are in the case of absence of spatial displacements. The above graph is in the

presence of spatial displacements
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4. Conclusion

Formally, the obtained periodic solutions (30) and (32) of the model
equation of Nikolaevskii are dynamically equivalent – they both follow from
the solution (26). On the one hand, they reflect the smooth transition between
the boundary states of the dynamic parameterε, i.e. from ε → 0 to ε → +∞
and on the other hand, they suggest the possibility their phase velocities to
coincide with the velocities of the soliton impulse or the solitary wave. From a
purely physical aspect, this eventual coincidence is of particular importance as
in this case the infinite sum of the solitary-wave profiles of the sec h2 type in
solution (32) can be interpreted as a real linear superposition of solitary waves.
This means, that in this case the soliton impulse or solitary wave is like a shell
of the periodic solitary-wave forms.

It is unusual for a non-integrable evolution equation such as equation
(2) to break up into four residual equations (6)–(9). Moreover, these residual
equations have a different bilinear structure: two of them have classic bilinearity
with respect to the Hirota operators, while the other two (the second and the
fourth) have a complicated nonlinear structure with respect to the same opera-
tors. It was a real challenge these residual equations to be satisfied by one and
the same function and five parameters. The physical interpretation has various
aspects, but the most interesting is the one related to the form of the separate
solitary-wave harmonics (See (32)). The values µm(ε) of the separate ampli-
tudes also take part in forming the individual spatial displacements. A similar
effect was observed for the first time in the case of non-integrable evolution par-
tial differential equations. Typically, the individual spatial displacements are
independent of the amplitudes of the solitary profiles sec h2. The explanation
of this circumstance lies in the non-standard form of the evolution equation
(2). There, the non-linear effects are balanced (in their major part) practically
by only one dominating convective term: uxxxxxx. This reduces the role of the
remaining convective terms with lower derivatives.

Appendix A

Logarithmic derivatives expressed by the Hirota’s bilinear differential
operators Dt, Dx and identities with the Jacobi θ-functions:

(ln ζ)xx =
D2

xζ.ζ

2ζ2
(ln ζ)xt =

DtD
ζ
x.ζ

2ζ2
;

(ln ζ)xxxx =
D4

xζ.ζ

2ζ2
− 6

(

D2
xζ.ζ

2ζ2

)2

;
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(ln ζ)xxxxxx =
D6

xζ.ζ

2ζ2
− 30

(

D2
xζ.ζ

2ζ2

)(

D4
xζ.ζ

2ζ2

)

+ 120

(

D2
xζ.ζ

2ζ2

)3

;

∞
∑

n=−∞

q2n2

= θ3;

θ3 = θ3(0, q
2)

∞
∑

n=−∞

qn2+(n−1)2 = q1/2θ2; θ2 = θ2(0, q
2);

∞
∑

n=−∞

n2q2n2

= qθ′3/2
∞
∑

n=−∞

(2n− 1)2qn2+(n−1)2 = 2q3/2θ′2;

∞
∑

n=−∞

n4q2n2

= q(θ′3 + qθ′′3)/4;
∞
∑

n=−∞

(2n − 1)4qn2+(n−1)2 = 4q3/2(θ′2 + qθ′′2);

∞
∑

n=−∞

n6q2n2

= q(qθ′3+q
2θ′′3)′/8;

∞
∑

n=−∞

(2n − 1)6qn2+(n−1)2 = 8q3/2(qθ′2+q
2θ′′2)′;

Appendix B

The second logarithmic derivative formula of the fourth Jacobi θ-function
θ4(ξ, q):

(B1)
∂2

∂x2
[ln θ4(ξ, q)] = µ2

0k
2cn2(ξ0, µ) − k0(q),

whereξ = kx + ωt + δ; ξ0 = πθ2
3(0, q)(kx + ωt + δ); µ2

0 = µ2ω2
1 = π2θ4

2(0, q);

µ = θ2
2(0, q)/θ

2
3(0, q); k0(q) =

k2

3π2θ4
2(0, q)

(

θ4
2(0, q)

θ4
3(0, q)

− θ′′′1 (0, q)

θ′1(0, q)
− 1

)

.

Proof. If ω1 = 2K1(η)/
√
e1 − e3 and ω2 = 2iK2(η)/

√
e1 − e3 are

the primitive periods of the basic Weierstrass elliptic function ℘(u, ω1, ω2)
(Im(ω2/ω1) > 0), then the elliptic function σ3(u, ω1, ω2) can be presented by
the following two equalities (See [14]):

σ3(zω1) = eηu2/ω1θ4(u/ω1, q)θ
−1
4 (0, q);
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σ3(zω1) = eη2 u/2σ(ω2/2 − u)σ−1(ω2/2),

where η = η1 + η2, ηj = ζ(ωj/2), j = 1, 2, d2[lnσ(u)]/du2 = −℘(u). If we
equalize the right sides of the last two equalities and double differentiate with
respect to ξ = u/ω1z, we will obtain:

(B2)
∂2

∂ξ2
[ln θ4(ξ, q)] = −ω2

1℘(ω2/2 − ξω1) − 2ηω1.

Taking into account the evenness of the function ℘(u) and the phase
modulations:

℘(u) = e3 + (e1 − e3)sn
−2(u

√
e1 − e3, µ);

sn(u+ iK2, µ) = µ sn(u, µ),

where µ2 = (e2 − e3)/(e1 − e3). Usually is denoted τ = ω2/ω1, e1 − e2 = 1,
whereat ω1 = πθ2

3(0, q); e1− e2 = θ4
4(0, q)/θ

4
3(0, q); e2− e3 = θ4

2(0, q)/θ
4
3(0, q) =

µ2. Then (B2) takes the following more compact form:

(B3)
∂2

∂x2
[ln θ4(ξ, q)] = ω2

1k
2cn2(ξω1, µ) − (e2 + 2ηω2).

The residual term in (B3) is transformed, using the relations (See
[14]): θ′1(0, q) = πθ2(0, q)θ3(0, q)θ4(0, q); 2ηω1 = −θ′′′1 (0, q)/3θ′1(0, q) whereat

k0(q) = e2 + 2ηω1 =
1

3

(

θ4
2(0, q)

θ4
3(0, q)

− θ′′′1 (0, q)

θ′1(0, q)
− 1

)

and formula (B3) confirms

the equality (B1).

Appendix C

Formula of the logarithmic derivative of θ2. The second Jacobi theta-
function θ2(z, q), (0 < |q| < 1) can be presented (See [14]) in the form of an
infinite product:

θ2(z, q) = 2H0(q)q
1/4 cos z.

∞
∏

n=1

(1 + 2q2n cos 2z + q4n),

where H0(q) =

∞
∏

k=1

(1 − q2k), q = eiπτ Imτ > 0.
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After differentiating with respect toz, we obtain for the logarithmic
derivative of θ2(z, q):

θ′2(z, q)

θ2(z, q)
= − tg z − 4

∞
∑

n=1

q2n sin 2z

1 + 2q2n cos 2z + q4n

= − tg z − 4
∞
∑

n=1

sin 2z

(q2n + q−2n) + 2 cos 2z

= − tg z − 2

∞
∑

n=−∞

sin 2z

cos 2nπτ + cos 2z

= − tg z −
∞
∑

n=−∞

sin[(z + nπτ) + (z − nπτ)]

cos(z + nπτ) cos(z − nπτ)

= − tg z −
∞
∑

n=1

[tg(z + nπτ) + tg(z − nπτ)]

= −
∞
∑

n=−∞

tg(z − nπτ) =i

∞
∑

n=−∞

tanh[i(z − nπτ)],

i.e.
d2

dz2
[ln θ2(z, q)] = −

∞
∑

n=−∞

sech2 [i(z − nπτ)],

or
θ′2(z, q)

θ2(z, q)
= −

∞
∑

n=−∞

sech2 [i(z − nπτ)].
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